已知向量
a
=3
e1
-2
e2
,
b
=4
e1
+
e2
,其中
e1
=(1,0),
e2
=(0,1),求:
(1)求
a
b
的值;  
(2)求
a
b
夾角θ的余弦值.  
(3)求
a
b
方向上的投影.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(1)利用數(shù)量積的坐標(biāo)運(yùn)算即可得出;
(2)利用向量夾角公式即可得出;
(3)利用向量的投影計(jì)算公式即可得出.
解答: 解:(1)∵
e1
=(1,0),
e2
=(0,1),向量
a
=3
e1
-2
e2
,
b
=4
e1
+
e2

a
=(3,-2),
b
=(4,1),
a
b
=3×4-2×1=10.
(2)|
a
|=
32+(-2)2
=
13
,|
b
|=
42+12
=
17

∴cosθ=
a
b
|
a
||
b
|
=
10
13×
17
=
10
221
221

(3)
a
b
方向上的投影=
a
b
|
b
|
=
10
17
=
10
17
17
點(diǎn)評(píng):本題考查了數(shù)量積的坐標(biāo)運(yùn)算、向量夾角公式、向量的投影計(jì)算公式,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a為正實(shí)數(shù),函數(shù)f(x)=
-2x(x2-a)+x2,x2≥a
2x(x2-a)+x2,x2<a

(Ⅰ)當(dāng)a=4時(shí),求f(x)的單調(diào)遞增區(qū)間:
(Ⅱ)函數(shù)f(x)在x∈[0,l]上的最小值為f(1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、PC的中點(diǎn). 
(1)求證:EF∥平面PAD; 
(2)求證:EF⊥CD;
(3)若∠PDA=45°,求證:EF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是橢圓上一點(diǎn),且∠F1PF2=60°.
①求△PF1F2的周長
②求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前60項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|-5<x<4},集合B={x|x<-6或x>1},集合C={x|x-m<0},求實(shí)數(shù)m的取值范圍,使其分別滿足下列兩個(gè)條件:①C?(A∩B);②C?(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2cosx,0),
b
=(
3
sinx,cosx),
c
=(cosx,sinx),函數(shù)f(x)=
a
•(
b
-
c
),x∈[0,
π
2
].a(chǎn),b,c為△ABC的角A、B、C的對(duì)邊.
(1)求函數(shù)f(x)的解析式及值域;
(2)在△ABC中,若
AB
AC
=-4,a=
7
,f(
A
2
)=1,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩條準(zhǔn)線將兩焦點(diǎn)間的線段三等分,則雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于各數(shù)互不相等的正整數(shù)數(shù)組(i1,i2,i3,…in)(n是不小于3的正整數(shù)),若對(duì)任意的p,q∈{1,2,3,…,n},當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”.一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,如數(shù)組(2,3,1)的逆序數(shù)等于2.則數(shù)組(4,2,3,1)的逆序數(shù)等于
 
;若數(shù)組(i1,i2,i3,…in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案