分析 (1)利用m∥l,求出直線l;設直線m的方程,利用設圓心O到直線m的距離為d,通過直線m與圓O相交,求解即可.
(2)求出CD,利用AB與CD之間的距離,結合$h=\frac{{\sqrt{3}}}{2}|{CD}|$求解即可.
解答 解:(1)∵m∥l,直線$l:y=\sqrt{3}x+4$,
∴可設直線$m:y=\sqrt{3}x+b$,即$\sqrt{3}x-y+b=0$,
設圓心O到直線m的距離為d,又因為直線m與圓O相交,
∴$d=\frac{|b|}{{\sqrt{{{({\sqrt{3}})}^2}+{{({-1})}^2}}}}<r=\sqrt{3}$,…(2分)
即$-2\sqrt{3}<b<2\sqrt{3}$,∴$b∈({-2\sqrt{3},2\sqrt{3}})$…(4分)
(2)由$|{CD}|=2\sqrt{{r^2}-{d^2}}=2\sqrt{3-\frac{b^2}{4}}$,①…(6分)
AB與CD之間的距離$h=\frac{{|{b-4}|}}{2}$,②…(8分)
又$h=\frac{{\sqrt{3}}}{2}|{CD}|$③…(10分)
聯立①②③得到:b2-2b-5=0,又$b∈({-2\sqrt{3},2\sqrt{3}})$,
解得:$b=1+\sqrt{6}$或$b=1-\sqrt{6}$…(12分)
點評 本題考查直線與圓的位置關系的應用,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | k∈[-$\frac{3}{4}$,0) | B. | k∈(0,$\frac{4}{3}$] | C. | k∈(0,$\frac{3}{4}$] | D. | k∈[-$\frac{3}{4}$,$\frac{3}{4}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0.1588 | B. | 0.1587 | C. | 0.1586 | D. | 0.1585 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2Sn=an+1 | B. | Sn=2an+1 | C. | 2Sn=an-1 | D. | Sn=2an-1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com