【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

【答案】1)當(dāng)時(shí),單調(diào)遞減.,

當(dāng)時(shí), 單調(diào)遞減,在單調(diào)遞增.

2)證明見解析.

【解析】分析:(1)首先確定函數(shù)的定義域,之后對(duì)函數(shù)求導(dǎo),之后對(duì)進(jìn)行分類討論,從而確定出導(dǎo)數(shù)在相應(yīng)區(qū)間上的符號(hào),從而求得函數(shù)對(duì)應(yīng)的單調(diào)區(qū)間;

(2)根據(jù)存在兩個(gè)極值點(diǎn),結(jié)合第一問(wèn)的結(jié)論,可以確定,得到兩個(gè)極值點(diǎn)是方程的兩個(gè)不等的正實(shí)根,利用韋達(dá)定理將其轉(zhuǎn)換構(gòu)造新函數(shù)證得結(jié)果.

詳解:(1)的定義域?yàn)?/span>,.

(i)若,則,當(dāng)且僅當(dāng),時(shí),所以單調(diào)遞減.

(ii)若,令得,.

當(dāng)時(shí),

當(dāng)時(shí),.所以單調(diào)遞減,在單調(diào)遞增.

(2)由(1)知,存在兩個(gè)極值點(diǎn)當(dāng)且僅當(dāng).

由于的兩個(gè)極值點(diǎn)滿足,所以,不妨設(shè),則.由于

,

所以等價(jià)于.

設(shè)函數(shù),由(1)知,單調(diào)遞減,又,從而當(dāng)時(shí),.

所以,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,將繞邊AB翻轉(zhuǎn)至,使面ABCDBC的中點(diǎn),設(shè)Q是線段PA上的動(dòng)點(diǎn),則當(dāng)PCDQ所成角取得最小值時(shí),線段AQ的長(zhǎng)度為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是某機(jī)械零件的幾何結(jié)構(gòu),該幾何體是由兩個(gè)相同的直四棱柱組合而成的,且前后,左右、上下均對(duì)稱,每個(gè)四棱柱的底面都是邊長(zhǎng)為2的正方形,高為4,且兩個(gè)四棱柱的側(cè)棱互相垂直.則這個(gè)幾何體的體積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心為原點(diǎn),左焦點(diǎn)為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點(diǎn).

1)若為線段的中點(diǎn),求直線的方程.

2)若點(diǎn)是直線上一點(diǎn),點(diǎn)在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,問(wèn): 是否為定值?若是.請(qǐng)求出的值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒(méi)有減少的概率為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一對(duì)夫婦為了給他們的獨(dú)生孩子支付將來(lái)上大學(xué)的費(fèi)用,從孩子一周歲生日開始,每年到銀行儲(chǔ)蓄元一年定期,若年利率為保持不變,且每年到期時(shí)存款(含利息)自動(dòng)轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時(shí)不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由甲、乙、丙三個(gè)人組成的團(tuán)隊(duì)參加某項(xiàng)闖關(guān)游戲,第一關(guān)解密碼鎖,3個(gè)人依次進(jìn)行,每人必須在1分鐘內(nèi)完成,否則派下一個(gè)人.3個(gè)人中只要有一人能解開密碼鎖,則該團(tuán)隊(duì)進(jìn)入下一關(guān),否則淘汰出局.根據(jù)以往100次的測(cè)試,分別獲得甲、乙解開密碼鎖所需時(shí)間的頻率分布直方圖.

1)若甲解開密碼鎖所需時(shí)間的中位數(shù)為47,求、的值,并分別求出甲、乙在1分鐘內(nèi)解開密碼鎖的頻率;

2)若以解開密碼鎖所需時(shí)間位于各區(qū)間的頻率代替解開密碼鎖所需時(shí)間位于該區(qū)間的概率,并且丙在1分鐘內(nèi)解開密碼鎖的概率為0.5,各人是否解開密碼鎖相互獨(dú)立.

①按乙丙甲的先后順序和按丙乙甲的先后順序哪一種可使派出人員數(shù)目的數(shù)學(xué)期望更小.

②試猜想:該團(tuán)隊(duì)以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的數(shù)學(xué)期望達(dá)到最小,不需要說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問(wèn)物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問(wèn)題:將120202020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

同步練習(xí)冊(cè)答案