17.化簡(jiǎn)log2$\sqrt{2\sqrt{2\sqrt{2\sqrt{2}…\sqrt{2}}}}$(總共有2015個(gè)2)的結(jié)果為( 。
A.$\frac{2014}{2015}$B.$\frac{{2}^{2015}-1}{{2}^{2015}}$C.$\frac{{2}^{2014}-1}{{2}^{2014}}$D.$\frac{{2}^{2016}-1}{{2}^{2016}}$

分析 化根式為分?jǐn)?shù)指數(shù)冪,利用等比數(shù)列的前n項(xiàng)和化簡(jiǎn),結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)得答案.

解答 解:log2$\sqrt{2\sqrt{2\sqrt{2\sqrt{2}…\sqrt{2}}}}$=$lo{g}_{2}{2}^{\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{2015}}}=lo{g}_{2}{2}^{\frac{{2}^{2015}-1}{{2}^{2015}}}$=$\frac{{2}^{2015}-1}{{2}^{2015}}$.
故選:B.

點(diǎn)評(píng) 本題考查對(duì)數(shù)的運(yùn)算性質(zhì),考查了有理指數(shù)冪的化簡(jiǎn)求值,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)P為拋物線C:y2=4x上一點(diǎn),記P到拋物線準(zhǔn)線l的距離為d1,點(diǎn)P到圓(x+2)2+(y+4)2=4的距離為d2,則d1+d2的最小值是( 。
A.6B.1C.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),PA=BC=AC=4,D為PC的中點(diǎn).
(1)求證:AD⊥平面PBC;
(2)在∠ACB的平分線上確定一點(diǎn)Q,使得PQ∥平面ABD,并求此時(shí)PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在直角坐標(biāo)系xOy中,銳角α的頂點(diǎn)是原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊交單位圓于點(diǎn)M(x1,y1),將角α的終邊按逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{3}$,交單位圓于點(diǎn)M(x2,y2).記f(α)=y1+y2
(I)求函數(shù)f(α)的值域;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊是a,b,c.若f(C)=$\sqrt{3}$,c=7,sinA+sinB=$\frac{13\sqrt{3}}{14}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)△AnBnCn為一族一邊長(zhǎng)始終相等的三角形,角An,Bn,Cn的對(duì)邊分別為an,bn,cn(n∈N*),滿足b1+c1=2a1,an+1=an,且an,bn+1,cn與an,cn+1,bn分別成等差數(shù)列,則角An的最大值是( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求證:兩條平行直線Ax+By+C1=0與Ax+By+C2=0間的距離為d=$\frac{|{C}_{1}-{C}_{2}|}{\sqrt{{A}^{2}+{B}^{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知公比為q的等比數(shù)列{an},且滿足條件|q|>1,a2+a7=2,a4a5=-15,則a12=( 。
A.-$\frac{27}{25}$B.-$\frac{25}{3}$C.-$\frac{27}{25}$或-$\frac{25}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,2),則|$\overrightarrow{a}$|=( 。
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓錐的側(cè)面積為2π,底面積為π,則該圓錐的內(nèi)接圓柱體積的最大值為$\frac{8π}{27}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案