17.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O為AD的中點(diǎn),PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$,M是棱PC上一點(diǎn),PA∥平面MOB;
(1)證明:CD⊥平面PAD;
(2)求證:M是棱PC的中點(diǎn);
(3)求三棱錐M-POB的體積.

分析 (1)由CD⊥AD,利用面面垂直的性質(zhì)定理即可得出CD⊥底面PAD.
(2)連接AC交OB于點(diǎn)N,連接MN.由BC∥AO,BC=AO,可得AN=NC.再利用線面平行的性質(zhì)定理可得AP∥MN,即可證明.
(3)由PA=PD=2=AD,OA=OD,可得PO⊥AD.利用面面垂直的性質(zhì)定理可得:PO⊥平面ABCD.于是VM-OPB=$\frac{1}{2}{V}_{P-OBC}$,即可得出.

解答 (1)證明:∵CD⊥AD,
平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,
∴CD⊥底面PAD.
(2)證明:連接AC交OB于點(diǎn)N,連接MN.
∵BC∥AO,BC=AO,
∴AN=NC.
∵PA∥平面MOB,平面PAC∩平面OMB=MN,
∴AP∥MN,又AN=NC.
∴PM=MC.
(3)解:∵PA=PD=2=AD,OA=OD,
∴PO⊥AD.
∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,
∴PO⊥平面ABCD.
∴VM-OPB=$\frac{1}{2}{V}_{P-OBC}$
=$\frac{1}{2}×\frac{1}{3}{S}_{△OBC}•PO$
=$\frac{1}{6}$×$\frac{1}{2}×\sqrt{3}×1$×$\sqrt{3}$
=$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查了空間線面面面的位置關(guān)系、三角形中位線定理、平行線的性質(zhì)、三棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax,g(x)=a2x-b,其中b<0,a>0且a≠1.當(dāng)x∈[-1,1]時(shí),y=f(x)的最大值與最小值之和為$\frac{5}{2}$.
(1)求a的值; 
(2)若a>1,且不等式|$\frac{f(x)+bg(x)}{f(x)}$|≤1在x∈[0,1]恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在正方體ABCD-A1B1C1D1中,求:
(1)BC1與平面ACC1A1所成的角;
(2)A1B1與平面A1C1B所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AB=2BC,∠BAD=60°,AE⊥BD.
(1)求證:CD∥平面ABFE;
(2)求直線BF與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=x2對(duì)于任意的x,y∈R都有( 。
A.f(x+y)=f(x)f(y)B.f(xy)=f(x)+f(y)C.f(xy)=f(x)f(y)D.f(x+y)=f(x)+f(y)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$f(x)=(1+\frac{1}{tanx}){sin^2}x-2sin(x+\frac{π}{4})sin(x-\frac{π}{4})$
(1)若tanα=2,求f(α)的值;
(2)已知sinθ,cosθ是方程x2-ax+a=0的兩根,求f(θ)-$\frac{1}{2}cos2θ-\frac{1}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)設(shè)a,b,c為正數(shù),且a+2b+3c=13,則$\sqrt{3a}$+$\sqrt{2b}$+$\sqrt{c}$的最大值為$\frac{13\sqrt{3}}{3}$;
(2)設(shè)正實(shí)數(shù)a,b,c滿足abc≥1,求$\frac{{a}^{2}}{a+2b}$+$\frac{^{2}}{b+2c}$+$\frac{{c}^{2}}{c+2a}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在長方體ABCD-A1B1C1D1中,AB=3,AD=2,AA1=4,則A1B與平面A1DCB1所成角的正弦值是$\frac{4\sqrt{5}}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知:函數(shù)$f(x)=x+\frac{m}{x}$,且f(1)=0
(1)求m的值和函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并說明理由;
(3)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案