若2sinα+cosα=0,求sin2α-3sinαcosα-5cos2α的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:計算題,三角函數(shù)的求值
分析:由2sinα+cosα=0,可得cosα=-2sinα,cos2α=
4
5
,利用同角三角函數(shù)的基本關(guān)系及二倍角公式,把要求的式子化簡,代入運算即可.
解答: 解:∵2sinα+cosα=0,
∴cosα=-2sinα,∴cos2α=
4
5

∴sin2α-3sinαcosα-5cos2α=-sinαcosα-5(2cos2α-1)=2sin2α-10cos2α+5
=7-12cos2α=-
13
5
點評:本題考查同角三角函數(shù)基本關(guān)系的運用,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(-2x+
π
6
).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[-
π
6
π
2
],求f(x)的值域;
(3)求f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),定義域為D,若存在x0∈D使f(x0)=x0,則稱(x0,x0)為平衡點,若f(x)=
3x+a
x+b
(f(x)不為常數(shù))的圖象上有兩個平衡點關(guān)于原點對稱,則a,b應(yīng)滿足的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=tan2x+tanx+1(x∈R,且x≠kπ+
π
2
)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
sin2x
sinx-cosx
-
sinx+cosx
tan2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α是第一象限角,則sin2α,cos2α,sin
α
2
,cos
α
2
,tan
α
2
中一定為正值的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y、z∈R+,且x+2y+z=1,則
1
x
+
2
y
+
9
z
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)+x是偶函數(shù),且f(2)=lg32+log416+6lg
1
2
+lg
1
5
,若g(x)=f(x)+1,則g(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1BC的中點.
(1)證明:平面AEB⊥平面B1CF;
(2)設(shè)P為線段BE上一點,且EP=2PB,求三棱錐P-B1C1F的體積.

查看答案和解析>>

同步練習(xí)冊答案