【題目】如圖所示,放置的邊長(zhǎng)為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過(guò)原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是yf(x),則對(duì)函數(shù)yf(x)有下列判斷:

①若-2≤x≤2,則函數(shù)yf(x)是偶函數(shù);

②對(duì)任意的x∈R,都有f(x2)f(x2)

③函數(shù)yf(x)在區(qū)間[2,3]上單調(diào)遞減;

④函數(shù)yf(x)在區(qū)間[4,6]上是減函數(shù).

其中判斷正確的序號(hào)是________(寫出所有正確結(jié)論的序號(hào))

【答案】①②④

【解析】當(dāng)-2≤x1時(shí),P的軌跡是以A為圓心,半徑為1圓,

當(dāng)-1≤x≤1時(shí),P的軌跡是以B為圓心,半徑為圓,

當(dāng)1≤x≤2時(shí),P的軌跡是以C為圓心,半徑為1圓,

當(dāng)2≤x≤3時(shí),P的軌跡是以A為圓心,半徑為1圓,

∴函數(shù)的周期是4,因此最終構(gòu)成的圖象如下:

①根據(jù)圖象的對(duì)稱性可知函數(shù)yf(x)是偶函數(shù),

∴①正確;

②由圖象可知函數(shù)的周期是4,∴②正確;

③由圖象可判斷函數(shù)yf(x)在區(qū)間[2,3]上單調(diào)遞增,∴③錯(cuò)誤;

④由圖象可判斷函數(shù)yf(x)在區(qū)間[4,6]上是減函數(shù),∴④正確.

故答案為①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問(wèn)題.

組別

分組

頻數(shù)

頻率

1

[50,60)

8

0.16

2

[60,70)

a

3

[7080)

20

0.40

4

[80,90)

0.08

5

[90,100]

2

b

合計(jì)

(1)求出a,b的值;

(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(80)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).

①求所抽取的2名同學(xué)中至少有1名同學(xué)來(lái)自第5組的概率;

②求所抽取的2名同學(xué)來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列, , , 期待數(shù)列

.

)分別寫出一個(gè)單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.

)記期待數(shù)列的前項(xiàng)和為,試證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)輸公司接受了向一地區(qū)每天至少運(yùn)送180 t物資的任務(wù),該公司有8輛載重為6 t的A型卡車和4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次,每輛卡車每天往返的費(fèi)用為A型卡車320元,B型卡車504元,則公司如何調(diào)配車輛,才能使公司所花的費(fèi)用最低,最低費(fèi)用為________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)x2b圖象上的點(diǎn)P(2,1)關(guān)于直線yx的對(duì)稱點(diǎn)Q在函數(shù)g(x)lnxa上.

()求函數(shù)h(x)g(x)f(x)的最大值;

()對(duì)任意x1[1,e],x2是否存在實(shí)數(shù)k,使得不等式成立若存在,請(qǐng)求出實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·山東)設(shè)f(x)xlnxax2(2a1)xa∈R.

(1)g(x)f′(x),求g(x)的單調(diào)區(qū)間;

(2)已知f(x)x1處取得極大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一張紙的長(zhǎng)、寬分別為2a2a,A,BC,D分別是其四條邊的中點(diǎn),現(xiàn)將其沿圖中虛線折起,使得P1P2,P3P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體,關(guān)于該多面體的下列命題,正確的是________(寫出所有正確命題的序號(hào)).

①該多面體是三棱錐;②平面BAD⊥平面BCD;

③平面BAC⊥平面ACD;④該多面體外接球的表面積為a2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)ex(ln xa)(e是自然對(duì)數(shù)的底數(shù),

e2.71 828).

(1)yf(x)x1處的切線方程為y2exb,求ab的值.

(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在公比為q的等比數(shù)列{an}中,已知a1=16,且a1,a2+2,a3成等差數(shù)列.

(Ⅰ)求q,an;

(Ⅱ)若q<1,求滿足a1-a2+a3-…+(-1)2n-1a2n>10的最小的正整數(shù)n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案