【題目】如圖,一張紙的長(zhǎng)、寬分別為2a,2aA,B,C,D分別是其四條邊的中點(diǎn),現(xiàn)將其沿圖中虛線折起,使得P1P2,P3P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體,關(guān)于該多面體的下列命題,正確的是________(寫出所有正確命題的序號(hào)).

①該多面體是三棱錐;②平面BAD⊥平面BCD;

③平面BAC⊥平面ACD;④該多面體外接球的表面積為a2.

【答案】①②③④

【解析】將平面圖形沿圖中虛線折起.使得P1P2,P3,P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體,則①由于(a)2+(a)2=4a2,∴該多面體是以A,BC,D為頂點(diǎn)的三棱錐,①正確.

②∵APBPAPCP,BPCPPBP,CP平面BCD,∴AP⊥平面BCD,∵AP平面BAD,∴平面BAD⊥平面BCD,正確.

③與②同理,可得平面BAC⊥平面ACD,正確.

④該多面體外接球的半徑為a,表面積為5πa2,正確.

點(diǎn)睛:立體幾何中折疊問(wèn)題,要注重折疊前后垂直關(guān)系的變化,不變的垂直關(guān)系是解決問(wèn)題的關(guān)鍵條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn), , 是橢圓上的點(diǎn),且,設(shè)動(dòng)點(diǎn)滿足

)求動(dòng)點(diǎn)的軌跡的方程;

若直線與曲線交于兩點(diǎn)求三角形面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米圓心角為(弧度)的扇形景觀水池,其中為扇形的圓心,同時(shí)緊貼水池周邊建一圈理想的無(wú)寬度步道,要求總預(yù)算費(fèi)用不超過(guò)萬(wàn)元,水池造價(jià)為每平方米元,步道造價(jià)為每米元.

(1)當(dāng)分別為多少時(shí),可使廣場(chǎng)面積最大,并求出最大值;

(2)若要求步道長(zhǎng)為米,則可設(shè)計(jì)出水池最大面積是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,放置的邊長(zhǎng)為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過(guò)原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是yf(x),則對(duì)函數(shù)yf(x)有下列判斷:

①若-2≤x≤2,則函數(shù)yf(x)是偶函數(shù);

②對(duì)任意的x∈R,都有f(x2)f(x2);

③函數(shù)yf(x)在區(qū)間[2,3]上單調(diào)遞減;

④函數(shù)yf(x)在區(qū)間[4,6]上是減函數(shù).

其中判斷正確的序號(hào)是________(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,A、B、C的對(duì)邊分別為ab,c,已知向量,n=(c,b-2a),且m·n=0.

(1)求角C的大;

(2)若點(diǎn)D為邊AB上一點(diǎn),且滿足, , ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是ABAA1的中點(diǎn).

求證:(1)E、C、D1、F四點(diǎn)共面;

(2)CE、D1F、DA三線共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·合肥市質(zhì)檢)已知點(diǎn)F為橢圓E (a>b>0)的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線與橢圓E有且僅有一個(gè)交點(diǎn)M.

(1)求橢圓E的方程;

(2)設(shè)直線y軸交于P,過(guò)點(diǎn)P的直線l與橢圓E交于不同的兩點(diǎn)A,B,若λ|PM|2|PA|·|PB|,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

平面直角坐標(biāo)系xOy中,射線lyx(x≥0),曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的方程為x2+(y-2)2=4;以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. 曲線C3的極坐標(biāo)方程為ρ=8sin θ.

(Ⅰ)寫出射線l的極坐標(biāo)方程以及曲線C1的普通方程;

(Ⅱ)已知射線lC2交于O,M,與C3交于O,N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|3x-1|-2|x|+2.

(Ⅰ)解不等式:f(x)<10;

(Ⅱ)若對(duì)任意的實(shí)數(shù)x,f(x)-|x|≤a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案