17.已知直線l1:ax+3y-1=0,${l_2}:2x+({a^2}-a)y+3=0$,且l1⊥l2,則a=0或$\frac{1}{3}$.

分析 根據(jù)兩直線垂直的關系,得到2a+3(a2-a)=0,即可求出a的值.

解答 解:由題意2a+3(a2-a)=0,
∴a=0或a=$\frac{1}{3}$,
故答案為0或$\frac{1}{3}$.

點評 本題考查兩直線垂直的性質,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|<$\frac{π}{2}$)的部分圖象如圖所示,下列說法正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關于點(-$\frac{5π}{12}$.0)對稱
C.將函數(shù)f(x)的圖象向左平移$\frac{x}{6}$個單位得到的函數(shù)圖象關于y軸對稱
D.函數(shù)f(x)的單調遞增區(qū)間是[kx+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$],(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,PA⊥⊙O面,PA=2,AB為⊙O的直徑,其長為4,四邊形ABCD內接于圓O,且∠ADC=120°.
(1)求點C到平面PAB的距離;
(2)當D在$\widehat{AC}$上什么位置時,BC∥平面POD;
(3)在(2)的條件下,求二面角D-PC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.一個長方體共頂點的三個面的面積分別是$\sqrt{2},\sqrt{3},\sqrt{6}$,這個長方體的八個頂點都在同一個球面上,則這個球的表面積是6π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知命題p:函數(shù)$y=sin\frac{π}{2}x$在x=a處取到最大值;命題q:直線x-y+2=0與圓(x-3)2+(y-a)2=8相切;則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,準線方程為x=±8,求該橢圓的標準方程
(2)求與雙曲線x2-2y2=2有公共漸近線,且過點M(2,-2)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{x^2}{2lnkx}$(k≠0)的圖象在x=$\sqrt{e}$處的切線垂直于y軸.
(Ⅰ)求函數(shù)f(x)的單調區(qū)間和極值;
(Ⅱ)設函數(shù)g(x)=-$\frac{x^2}{2}+alnx+a\;({a>0})$,若對于?x1,x2∈(1,+∞),總有f(x1)≥g(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=|x-a|,a∈R.
(Ⅰ)當a=2時,解不等式:f(x)≥6-|2x-5|;
(Ⅱ)若關于x的不等式f(x)≤4的解集為[-1,7],且兩正數(shù)s和t滿足2s+t=a,求證:$\frac{1}{s}+\frac{8}{t}≥6$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.△ABC中,AB=3,AC=4,∠BAC=60°,求BC.

查看答案和解析>>

同步練習冊答案