分析 p真?△=4a2-4(a+2)≥0,q真?a≤(x2)min=1.由“p且q”為真命題,可得p、q都是真命題.即可得出.
解答 解:p真?△=4a2-4(a+2)≥0?a≤-1或a≥2,
q真?a≤(x2)min=1.
∵“p且q”為真命題,∴p、q都是真命題.
∴$\left\{\begin{array}{l}{a≤-1或a≥2}\\{a≤1}\end{array}\right.$,解得a≤-1,
∴“p且q”是真命題時,實數(shù)a的取值范圍是(-∞,-1].
點評 本題考查了方程的解與判別式的關系、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(0,\frac{3}{2})$ | B. | $(0,\frac{{3\sqrt{3}}}{2})$ | C. | $(0,\frac{{\sqrt{3}}}{2})$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com