過橢圓
x2
25
+
y2
16
=1
的中心任作一直線交橢圓于P、Q兩點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則△PQF面積的最大值是
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意,S△ABF=S△OBF+S△AOF,從而可知當(dāng)直線與y軸重合時(shí),面積最大.
解答: 解:
x2
25
+
y2
16
=1
,a=5,b=4,c=3,
如圖,S△ABF=S△OBF+S△AOF
則當(dāng)直線與y軸重合時(shí),面積最大,
故最大面積為
1
2
×3×8=12.
故答案為:12.
點(diǎn)評(píng):本題考查了橢圓的圖形特征即面積的等量轉(zhuǎn)化,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)x,[x]表示不超過x的最大整數(shù),觀察下列等式:
[
1
]+[
2
]+[
3
]=3
[
4
]+[
5
]+[
6
]+[
7
]+[
8
]=10
[
9
]+[
10
]+[
11
]+[
12
]+[
13
]+[
14
]+[
15
]=21

按照此規(guī)律第n個(gè)等式的等號(hào)右邊的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(x1,m),B(x2,m),C(x2,0),D(x1,0),其中x2>x1>0,且
x=x1
y=m
x=x2
y=m
為方程yx2-x+y=0的兩組不同實(shí)數(shù)解,若四邊形ABCD是矩形,則此矩形繞x軸旋轉(zhuǎn)一周得到的圓柱的體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究某種細(xì)菌在特定環(huán)境下,隨時(shí)間變化繁殖情況,得如下實(shí)驗(yàn)數(shù)據(jù):
天數(shù)t(天)34567
繁殖個(gè)數(shù)y(千個(gè))2.5344.56
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測(cè)t=8時(shí),細(xì)菌繁殖個(gè)數(shù).
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
b
=
n
i=1
(ti-
.
t
)(yi-
.
y
)
n
i=1
(ti-
.
t
)2
a
=
.
y
-
b
.
t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1>0,S3=S11,該數(shù)列的前多少項(xiàng)之和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(3,5,-4),
b
=(2,1,8).
(1)求2
a
+3
b
,3
a
-2
b
,
a
b

(2)若λ1
a
2
b
與z軸垂直,求λ1、λ2滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,a2+a4=14,a5+a7=26.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn(an2-1)=8,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:1≤Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)算法流程圖,如果輸入x的值是
1
4
,則輸出S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=c,BC=a,AC=b,若cos2B+cos2C-cos2A=1成立,試判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案