設(shè)向量
a
=(3,5,-4),
b
=(2,1,8).
(1)求2
a
+3
b
,3
a
-2
b
,
a
b
;
(2)若λ1
a
2
b
與z軸垂直,求λ1、λ2滿足的關(guān)系式.
考點(diǎn):向量的數(shù)量積判斷向量的共線與垂直
專題:空間向量及應(yīng)用
分析:(1)利用空間向量的坐標(biāo)運(yùn)算解答;
(2)利用向量垂直,向量的數(shù)量積為0 解答.
解答: 解:由已知(1)2
a
+3
b
=2(3,5,-4)+3(2,1,8)=(6,10,-8)+(6,3,24)=(12,13,16).
3
a
-2
b
=3(3,5,-4)-2(2,1,8)=(9,15,-12)-(4,2,16)=(5,13,-28).
a
b
=(3,5,-4)•(2,1,8)=6+5-32=-21.
(2)因?yàn)棣?SUB>1
a
2
b
與z軸垂直,即與向量(0,0,1)垂直,
所以(λ1
a
2
b
)•(0,0,1)=0,
所以-4λ1+8λ2=0
即λ1=2λ2
點(diǎn)評(píng):本題考查了空間向量加減的坐標(biāo)運(yùn)算以及數(shù)量積的坐標(biāo)運(yùn)算;屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某單位設(shè)計(jì)一個(gè)展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),布設(shè)一個(gè)對(duì)角線在l上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長(zhǎng)的材料彎折而成,邊BA,AD用一根9米長(zhǎng)的材料彎折而成,要求∠A和∠C互補(bǔ),且AB=BC.記AB=x米,四邊形ABCD面積為S,則S的最大值為( 。
A、6
B、6
3
C、8
D、8
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)科考試共有100道單項(xiàng)選擇題,有甲、乙兩種計(jì)分法.某學(xué)生有a道題答對(duì),b道題答錯(cuò),c道題未作答,則甲計(jì)分法的得分為X=a-
b
4
,乙計(jì)分法的得分為Y=a+
c
5
.某班50名學(xué)生參加了這科考試,現(xiàn)有如下結(jié)論:
①同一學(xué)生的X分?jǐn)?shù)不可能大于Y分?jǐn)?shù);
②任意兩個(gè)學(xué)生X分?jǐn)?shù)之差的絕對(duì)值不可能大于Y分?jǐn)?shù)之差的絕對(duì)值;
③用X分?jǐn)?shù)將全班排名次的結(jié)果與用Y分?jǐn)?shù)將全班排名次的結(jié)果是完全相同的;
④X分?jǐn)?shù)與Y分?jǐn)?shù)是正先關(guān)的.
其中正確的有
 
.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
a•2x+a-2
2x+1
,(x∈R).
(1)試確定實(shí)數(shù)a的值,并證明f(x)為R上的增函數(shù);
(2)記an=f[log2(2n-1)]-1,Sn=a1+a2+…+an,求
lim
n→∞
Sn

(3)若方程f(x)=a在(-∞,0)上有解,試證-1<3f(a)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
25
+
y2
16
=1
的中心任作一直線交橢圓于P、Q兩點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則△PQF面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(cosx,sin(
π
2
+x)),
n
=(2
3
sinx,2cosx).
(Ⅰ)若
m
≠0,
m
n
,求tan2x的值;
(Ⅱ)設(shè)函數(shù)f(x)=
m
n
,求函數(shù)f(x)的最大值及取得最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn)A(-a,1),B(a,-1),且a>0,若圓C上存在點(diǎn)P,使得∠APB=90°,則a的最大值為.( 。
A、6
B、
35
C、2
6
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)求C的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在曲線C上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,且數(shù)列{
Sn
}也為等差數(shù)列,則a13=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案