已知{an}是等差數(shù)列,a2+a4=14,a5+a7=26.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn(an2-1)=8,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:1≤Tn<2.
考點(diǎn):數(shù)列的求和,等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的通項(xiàng)公式即可得出;
(2)由(1)可得bn=
8
(2n+1)2-1
=2(
1
n
-
1
n+1
)
.利用“裂項(xiàng)求和”可得Tn,再利用數(shù)列的單調(diào)性即可證明.
解答: (1)解:設(shè)等差數(shù)列{an}的公差為d,∵a2+a4=14,a5+a7=26.
2a1+4d=14
2a1+10d=26
,解得
a1=3
d=2

∴an=3+2(n-1)=2n+1.
(2)證明:∵bn(an2-1)=8,
bn=
8
(2n+1)2-1
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

∴數(shù)列{bn}的前n項(xiàng)和為T(mén)n=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]

=2(1-
1
n+1
)
,
∴Tn<2.
又?jǐn)?shù)列{1-
1
n+1
}
單調(diào)遞增,∴Tn≥T1=2×(1-
1
2
)
=1.
綜上可得:1≤Tn<2.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,
b2-a2-c2
ac
=
cos(A+C)
sinAcosA

(1)求角A;
(2)若a=
2
,當(dāng)sinB+cos(
12
-C)取得最大值時(shí),求B和b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)距離市中心的遠(yuǎn)近利用分層抽樣的方法從某市有20家連鎖店的連鎖企業(yè)中隨機(jī)抽取其中的5家連鎖店調(diào)查得到離市中心的距離x(千米)與銷售總額y(萬(wàn)元)的數(shù)據(jù)如下表所示:
距離x(千米)99.51010.511
銷售總量y(萬(wàn)元)1110865
由散點(diǎn)圖可知,銷售量與距離x之間有較好的線性相關(guān)關(guān)系,且回歸直線方程是y=-3.2x+a,若甲連鎖店與乙連鎖店之間的銷售額相差6.4萬(wàn)元,則甲、乙兩店距離市中心的距離相差.
A、0.5千米B、1千米
C、1.5千米D、2千米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
25
+
y2
16
=1
的中心任作一直線交橢圓于P、Q兩點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則△PQF面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-
1
x+1
的單調(diào)區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn)A(-a,1),B(a,-1),且a>0,若圓C上存在點(diǎn)P,使得∠APB=90°,則a的最大值為.(  )
A、6
B、
35
C、2
6
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2
sin(2x-
π
4
)+2cos2x的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式x2+ax-c<0的解集為{x|-2<x<1},對(duì)于任意的t∈[1,2],函數(shù)f(x)=ax3+(m+
1
2
)x2-cx在區(qū)間(t,3)上總不是單調(diào)函數(shù),m的取什值范圍是( 。
A、-
14
3
<m<-3
B、-3<m<-1
C、-
14
3
<m<-1
D、-3<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=|x-
1
a
|+|x+a|(a>0).證明:f(x)≥2;
(Ⅱ)若實(shí)數(shù)x,y,z滿足x2+4y2+z2=3,求證:|x+2y+z|≤3.

查看答案和解析>>

同步練習(xí)冊(cè)答案