函數(shù)y=sinx+cosx在(π,3π)上的單調(diào)遞增區(qū)間為
 
考點(diǎn):兩角和與差的正弦函數(shù)
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:利用輔助角公式將函數(shù)進(jìn)行化簡(jiǎn)即可.
解答: 解:y=sinx+cosx=
2
sin(x+
π
4
),
由2kπ-
π
2
≤x+
π
4
≤2kπ+
π
2
,k∈Z,
解得2kπ-
4
≤x≤2kπ+
π
4
,k∈Z,
∵x∈(π,3π),
∴當(dāng)k=1時(shí),
4
≤x≤
4

故函數(shù)的單調(diào)遞增為[
4
,
4
],
故答案為:[
4
,
4
]
點(diǎn)評(píng):本題主要考查三角函數(shù)的單調(diào)區(qū)間的求解,根據(jù)三角函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且當(dāng)-1≤x<0時(shí).f(x)=-2x3-5ax2-4a2x-b.
(1)當(dāng)a=b=1時(shí),求函數(shù)f(x)的解析式;
(2)當(dāng)1<a≤3時(shí),求函數(shù)f(x)在[-1,0)上最大值g(a);
(3)如果對(duì)滿(mǎn)足1<a≤3的一切實(shí)數(shù)a,不等式f(x)≤0在[-1,0)上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果圓(x-m)2+(y-2m)2=r2關(guān)于直線(xiàn)x+y-3=0對(duì)稱(chēng),則圓的圓心坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinxcos2x在區(qū)間[0,
π
2
]上的最大值是( 。
A、0
B、
4
27
C、
2
3
9
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:M∈{(x,y)||x|+|x-2|+
y2+2y+2
≤3};q:M∈{(x,y)|(x-1)2+y2<r2}(r>0).如果p是q的充分但不必要條件,則r的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱ABC-A′B′C′中,側(cè)棱長(zhǎng)為2,底面邊長(zhǎng)為1,點(diǎn)M是BC的中點(diǎn),在直線(xiàn)CC′上求一點(diǎn)N,使得MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P點(diǎn)在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)H(-3,0),E(-1,0),點(diǎn)M在直線(xiàn)PQ上,且滿(mǎn)足
HP
PM
=0,
PM
=-
3
2
MQ
.當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),記點(diǎn)M的軌跡為G.在軌跡G上經(jīng)過(guò)點(diǎn)F(1,0)作弦AB
(1)求軌跡G的方程;
(2)若
AF
FB
,求證:
EF
⊥(
EA
EB
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在湖面上高為10m處測(cè)得天空中一朵云的仰角為30°,測(cè)得湖中之影的俯角為45°,則云距湖面的高度為
 
(精確到0.1m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=(
1
2
)
1
3
,b=(
1
3
)
1
2
,c=ln
3
π
,則(  )
A、c<a<b
B、c<b<a
C、a<b<c
D、b<a<c

查看答案和解析>>

同步練習(xí)冊(cè)答案