19.在正方體中放入9個球,一個與立方體6個表面相切,其余8個相等的球都與這個球及立方體的三個表面相切,若正視的方向是某條棱的方向,則正視圖為(  )
A.B.C.D.

分析 由于大球與小球是順著對角線方向相切的,故從棱的方向看,大圓與小圓相交.

解答 解:設(shè)小球的半徑為1,正方體邊長為a,
則大圓直徑為a,
正方體的對角線為$\sqrt{3}$a=a+2(1+$\sqrt{3}$),解得a=($\sqrt{3}+1$)2=4+2$\sqrt{3}$.
正視圖中大圓半徑為$\frac{a}{2}$=2+$\sqrt{3}$,
∴正視圖中的大圓與小圓相交.
故選B.

點評 本題考查了棱柱與內(nèi)切球的關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.若tan(α+$\frac{π}{4}$)=3,則tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+2mx+2m-7,x∈[-1,2],求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)x,y∈R,a>1,b>1,若ax=by=3,a+2b=6$\sqrt{2}$,則$\frac{1}{x}$+$\frac{1}{y}$的最大值是( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如果$\frac{2π}{3}$弧度的圓心角所對的弦長為2,那么這個圓心角所對的弧長為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{4π}{3}$C.$\frac{{4\sqrt{3}}}{9}π$D.$\frac{{4\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在如圖程序框圖中,已知:f0(x)=(x+9)ex,則輸出的是( 。
A.2019ex+xexB.2018ex+xexC.2017ex+xexD.2016ex+xex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在某中學高一年級的160名學生中開展一項社會調(diào)查,先將學生隨機編號為1,2,3,…,159,160,采用系統(tǒng)抽樣的方法(等間距地抽取,每段抽取一個個體).已知抽取的學生中最小的兩個編號為6,22,那么抽取的學生中,最大的編號應(yīng)該是( 。
A.141B.142C.149D.150

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.復數(shù)$\frac{-i}{3+i}$在復平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示,
(1)求函數(shù)的解析式;
(2)求這個函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習冊答案