已知數(shù)列{an}滿足a1=1,n(an+1-an)=an+n2+n,n∈N*,證明:數(shù)列{
an
n
}
是等差數(shù)列.
考點(diǎn):等差關(guān)系的確定
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由n(an+1-an)=an+n2+n,nan+1-(n+1)an=n(n+1),可得
an+1
n+1
-
an
n
=1,利用等差數(shù)列的定義即可得出結(jié)論.
解答: 證明:∵n(an+1-an)=an+n2+n,
∴nan+1-(n+1)an=n(n+1),
an+1
n+1
-
an
n
=1,
∴數(shù)列{
an
n
}
是等差數(shù)列.
點(diǎn)評(píng):本題考查等差關(guān)系的確定,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(-x),當(dāng)x∈(0,
1
2
]時(shí),f(x)=log
1
2
(1-x),則f(x)在區(qū)間(1,
3
2
)內(nèi)是( 。
A、減函數(shù)且f(x)>0
B、減函數(shù)且f(x)<0
C、增函數(shù)且f(x)>0
D、增函數(shù)且f(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)袋中有8個(gè)紅球,2個(gè)白球,若從袋中任取4個(gè)球,則其中恰有3個(gè)紅球的概率為( 。
A、
C
1
8
C
3
4
C
4
10
B、
C
3
8
C
1
4
C
4
10
C、
C
1
8
C
3
4
C
4
10
D、
C
3
8
C
1
2
C
4
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的定義域?yàn)椋?,+∞)且滿足f(xy)=f(x)+f(y),且0<x<1時(shí),f(x)>0.
(1)求f(1);
(2)證明:f(x)在定義域上是減函數(shù);
(3)若f(2)=1,求滿足f(x)≤2-f(x-3)的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四組函數(shù)中f(x)與g(x)是同一函數(shù)的是( 。
A、f(x)=x,g(x)=
x2
x
B、f(x)=(
1
2
)x
,g(x)=x
1
2
C、f(x)=2lgx,g(x)=lgx2
D、f(x)=|x|,g(x)=
x(x≥0)
-x(x<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
、
b
、
c
均為單位向量,且滿足
a
b
=0,則(
a
+
b
+
c
)•(
a
+
c
)的最大值是( 。
A、2+2
2
B、2+
5
C、3+
2
D、1+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差和首項(xiàng)都不等于0,且a2,a4,a8成等比數(shù)列,則
a1+a5+a9
a2+a3
=( 。
A、2B、3C、5D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}滿足a1a5=a3,則a3=(  )
A、1B、-1
C、0或1D、-1或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={0,1},B={x∈R|0<x<2},則A∩B=(  )
A、{0}B、{1}
C、[0,1]D、(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案