已知集合A={0,1},B={x∈R|0<x<2},則A∩B=( 。
A、{0}B、{1}
C、[0,1]D、(0,1)
考點:交集及其運算
專題:集合
分析:由A與B,求出兩集合的交集即可.
解答: 解:∵A={0,1},B={x∈R|0<x<2},
∴A∩B={1}.
故選:B.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,n(an+1-an)=an+n2+n,n∈N*,證明:數(shù)列{
an
n
}
是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|
x-1
x-3
<0},B={x|1<log2x<2},則A∩B=( 。
A、{x|0<x<3}
B、{x|2<x<3}
C、{x|1<x<3}
D、{x|1<x<4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊過點(-1,
3
),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax2+1.
(Ⅰ)若函數(shù)f(x)的圖象關于點(0,1)對稱,直接寫出a的值;
(Ⅱ)求函數(shù)f(x)的單調遞減區(qū)間;
(Ⅲ)若f(x)≥1在區(qū)間[3,+∞)上恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=-
1
2
+
1
2x+a
是奇函數(shù).
(1)求a的值;
(2)判斷并用定義證明函數(shù)f(x)的單調性;
(3)若不等式f(k3x)+f(3x-9x-2)>0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=4,an+1=an+k•3n+1(n∈N+,k為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)設數(shù)列{bn}滿足bn=
n
an-n
,求數(shù)列{bn}的前n項和Sn;
(2)設數(shù)列{cn}滿足cn=
n2
an-n
,證明:cn
4
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是正四面體的平面展開圖,G、H、M、N分別為DE、BE、EF、EC的中點,在這個正四面體中,
①GH與EF平行;
②BD與MN為異面直線;
③GH與MN成60°角;
④DE=2MN.
以上四個命題中,正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知“k∈(m,+∞)”是“
x2
2
+
y2
8
xy
2k
”的充分不必要條件,則實數(shù)的取值范圍是
 

查看答案和解析>>

同步練習冊答案