如圖,從氣球A測得正前方的濟南全運會東荷、西柳兩個場館B、C的俯角分別為α、β,此時氣球的高度為h,則兩個場館B、C間的距離為( 。
A、
hsinαsinβ
sin(α-β)
B、
hsin(β-α)
sinαsinβ
C、
hsinα
sinβsin(α-β)
D、
hsinβ
sinαsin(α-β)
考點:解三角形的實際應用
專題:計算題,解三角形
分析:過A作垂線AD交CB于D,由題意可得∠ABD=α,AB=
h
sinα
,∠ACB=π-β,∠BAC=β-α,在△ABC中利用正弦定理,可求BC
解答: 解:過A作垂線AD交CB于D,則在Rt△ADB中,∠ABD=α,AB=
h
sinα
.                       
又在△ACB中,∠ACB=π-β,∠BAC=β-α,
由正弦定理,得BC=
hsin(β-α)
sinsinβ

即兩個場館B、C間的距離為
hsin(β-α)
sinsinβ

故選:B.
點評:本題主要考查了正弦定理在解決實際問題中的應用,解決本題的關鍵是要把實際問題轉化為數(shù)學問題,還要知道俯角的概念.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若某簡單空間幾何體的三視圖都是邊長為1的正方形,則這個空間幾何體的內切球的體積為( 。
A、
4
3
π
B、
2
3
π
C、
1
3
π
D、
1
6
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在圓C中,若
AB
AC
=1,則弦AB的長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A,B,C是平面內不共線的三點,點P在該平面內且有
PA
+2
PB
=
0
,現(xiàn)將一粒黃豆隨機撒在△ABC內,則這粒黃豆落在△PBC內的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
ab
cd
=ad+bc
(1)若
3
sin
x
4
1
cos2
x
4
cos
x
4
=0,求cos(
2
3
π-x)的值;
(2)記f(x)=
3
sin
x
4
cos2
x
4
1cos
x
4
,在△ABC中,有A,B,C滿足條件:sinAcosB-cosBsinC=cosCsinB-cosBsinA,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足:a1=1,an+1=2an(n∈N*),則a5=(  )
A、8B、16C、32D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期T;
(Ⅱ)把f(x)的圖象向左平移
π
12
個單位,得到的圖象對應的函數(shù)為g(x),求函數(shù)g(x)在[0,
π
4
]的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2-
1
2
lnx+1在其定義域內的一個子區(qū)間(a-1,a+1)內存在極值,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列1
1
2
,3
1
4
,5
1
8
,7
1
16
,…則其前n項和Sn為( 。
A、n2+1-
1
2n
B、n2+2-
1
2n
C、n2+1-
1
2n-1
D、n2+2-
1
2n-1

查看答案和解析>>

同步練習冊答案