18.設$\overrightarrow{a}$、$\overrightarrow$都是非零向量,下列四個條件中,一定能使$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow}{|\overrightarrow|}$=$\overrightarrow{0}$成立的是(  )
A.$\overrightarrow{a}$=-2$\overrightarrow$B.$\overrightarrow{a}$=2$\overrightarrow$C.$\overrightarrow{a}$∥$\overrightarrow$D.$\overrightarrow{a}$⊥$\overrightarrow$

分析 只有非零向量$\overrightarrow{a}$、$\overrightarrow$同向共線時,只有A滿足條件.

解答 解:只有非零向量$\overrightarrow{a}$、$\overrightarrow$同向共線時,$\overrightarrow{a}$=-2$\overrightarrow$,
∴$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow}{|\overrightarrow|}$=$\frac{-2\overrightarrow}{|-2\overrightarrow|}$+$\frac{\overrightarrow}{|\overrightarrow|}$=$\overrightarrow{0}$.
故選:A.

點評 本題考查了向量共線定理、向量運算,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.直線x-$\sqrt{3}$y+3=0的傾斜角是(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.樣本中共有5個個體,其中四個值分別為0,1,2,3,第五個值丟失,但該樣本的平均值為1,則樣本方差為( 。
A.-1B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某中學有高二年級學生,分成水平相當?shù)腁、B兩類進行教學實驗,為對比教學效果,現(xiàn)用從高二年級學生中抽取部分學生進行測試,其中抽取A類學生40人,B類學生60人,經(jīng)過測試,得到75分以上A、B兩類參加測試學生成績的莖葉圖(圖一)(莖葉分別是十位和個位的數(shù)字),以及學生成績頻率分布表(表一)和直方圖(圖二)

表一:100名測試學生成績頻率分布表;  圖二:100名測試學生成績頻率分布直方圖
組號分組頻數(shù)頻率
1[55,60)50.05
2[60,65)200.29
3[65,70)
4[70,75)350.35
5[75,80)
6[80,85)
合計1001.00
(Ⅰ)在答題卡上先填寫頻率分布表(表一)中的六個空格,然后將頻率分布直方圖(圖二)補充完整;
(Ⅱ)該學校擬定從參加考試的79分以上(含79分)的B類學生中隨機抽取2人代表學校參加市交流活動,求抽到的2人分數(shù)都在80分以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設數(shù)列{an}的前n項和為Sn,若S2=4,an+1=2Sn+1,n∈N*,則{an}的通項公式為an=3n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知an=$\left\{\begin{array}{l}{\frac{{2}^{n+1}}{{2}^{n}+1},1≤n<10000}\\{\frac{(n+1)^{2}}{{n}^{2}+1},n≥10000}\end{array}\right.$,n∈N*,則$\underset{lim}{n→∞}$an=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知A(0,2)是定圓C:x2+y2=16內(nèi)的一個定點,D是圓上的動點,P是線段AD的中點,求:
(1)P點所在的曲線方程E;
(2)過點A且斜率為-$\frac{3}{4}$的直線與曲線E交于M、N兩點,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.定義域與值域都是[-2,2]的兩個函數(shù)f(x)、g(x)的圖象如圖所示(實線部分),則下列四個命題中,
①方程f[g(x)]=0有6個不同的實數(shù)根;
②方程g[f(x)]=0有4個不同的實數(shù)根;
③方程f[f(x)]=0有5個不同的實數(shù)根;
④方程g[g(x)]=0有3個不同的實數(shù)根;
正確的命題是( 。
A.②③④B.①④C.②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)的最大值為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步練習冊答案