7.函數(shù)f(x)=sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)的最大值為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

分析 利用兩角和與差的三角函數(shù),化簡三角函數(shù)為一個角的一個三角函數(shù)的形式,然后求解最大值.

解答 解:f(x)=sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)=sin x+$\sqrt{3}$cos x=2sin(x+$\frac{π}{3}$),知其最大值為2.
故選:C.

點(diǎn)評 本題考查兩角和與差的三角函數(shù),考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$\overrightarrow{a}$、$\overrightarrow$都是非零向量,下列四個條件中,一定能使$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow}{|\overrightarrow|}$=$\overrightarrow{0}$成立的是( 。
A.$\overrightarrow{a}$=-2$\overrightarrow$B.$\overrightarrow{a}$=2$\overrightarrow$C.$\overrightarrow{a}$∥$\overrightarrow$D.$\overrightarrow{a}$⊥$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{2}{3}$,b=$\sqrt{5}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)F1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),A、B為橢圓的左、右頂點(diǎn),P為橢圓C上的點(diǎn),求證:以PF2為直徑的圓與以AB為直徑的圓相切;
(3)過左焦點(diǎn)F1作互相垂直的弦MN與GH,判斷MN的中點(diǎn)與GH的中點(diǎn)所在直線l是否過x軸上的定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F(xiàn)($\sqrt{2}$,0)為其右焦點(diǎn),過F垂直于x軸的直線與橢圓相交所得的弦長為2,則橢圓C的方程為$\frac{x^2}{4}+\frac{y^2}{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(2x)=x+1,則f(x)=log2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若不等式cx2+bx+a<0的解集為{x|-3<x<$\frac{1}{2}$},則不等式的解集為ax2+bx+c≥0( 。
A.$\{x|-2<x<\frac{1}{3}\}$B.$\{x|x>\frac{1}{3}$或x<-2}C.$\{x|-\frac{1}{3}≤x≤2\}$D.{x|x<-3或$x>\frac{1}{2}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.冪函數(shù)f(x)圖象過(2,4),則冪函數(shù)f(x)=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆山東臨沭一中高三上學(xué)期10月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知定義在上的函數(shù)滿足,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆江西吉安一中高三上學(xué)期段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

在等腰梯形中,,且,其中,以為焦點(diǎn)且過點(diǎn)的雙曲線的離心率為,以為焦點(diǎn)且過點(diǎn)的橢圓的離心率為,若對任意,不等式恒成立,則的最大值是( )

A. B. C.2 D.

查看答案和解析>>

同步練習(xí)冊答案