分析 (Ⅰ)利用三角恒等變換化簡函數(shù)f(x),根據(jù)三角函數(shù)的圖象與性質(zhì)即可求出函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)根據(jù)三角函數(shù)的圖象平移,得出函數(shù)F(x)的解析式,再利用余弦定理和基本不等式,結(jié)合三角形的三邊關(guān)系,即可求出b的取值范圍.
解答 解:(Ⅰ)函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$(1+cos2x)-$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)-1,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
則kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
所以函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z;
(Ⅱ)函數(shù)f(x)的圖象各點縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍,得函數(shù)y=sin(x-$\frac{π}{6}$)-1的圖象,
再向左平移$\frac{π}{3}$個單位,得函數(shù)y=sin(x+$\frac{π}{3}$-$\frac{π}{6}$)-1的圖象,
所以函數(shù)F(x)=sin(x+$\frac{π}{6}$)-1;
又△ABC中,a+c=4,F(xiàn)(B)=0,
所以$B+\frac{π}{6}=2kπ+\frac{π}{2},k∈Z$,
所以$B=\frac{π}{3}$;
由余弦定理可知,
b2=a2+c2-2ac•cos$\frac{π}{3}$=a2+c2-ac=(a+c)2-3ac≥16-3•${(\frac{a+c}{2})}^{2}$=4,
當(dāng)且僅當(dāng)a=c=2時取“=”,
所以b≥2;
又b<a+c=4,
所以b的取值范圍是[2,4).
點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了解三角形的應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=1 | B. | x=-1 | C. | y=1 | D. | y=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 28 | C. | 24 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{1+ai}$ | B. | $\frac{1+ai}{{1+{a^2}}}$ | C. | $\frac{1}{1-ai}$ | D. | $\frac{-1+ai}{{1+{a^2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (-2,0) | C. | (-1,0) | D. | (2,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com