【題目】如圖,在五面體中,側面是正方形,是等腰直角三角形,點是正方形對角線的交點,且.
(1)證明:平面;
(2)若側面與底面垂直,求五面體的體積.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點,連接、,證明四邊形為平行四邊形,可得出,再利用直線與平面平行的判定定理可證明出平面;
(2)取的中點,的中點,連接、、,將五面體分割為三棱柱和四棱錐,證明出底面和平面,然后利用柱體和錐體體積公式計算出兩個簡單幾何體的體積,相加可得出五面體的體積.
(1)取的中點,連接、,
側面為正方形,且,為的中點,
又為的中點,且,
且,,所以,四邊形為平行四邊形,.
平面,平面,平面;
(2)取的中點,的中點,連接、、,
四邊形為正方形,.
平面平面,平面平面,平面,
底面,
易知,,,
,
為中點,,,
平面,平面,,
,、平面,平面.
,平面,且,
,因此,.
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),再將所得的圖象向左平移個單位長度后得到函數(shù)的圖象.
(1)寫出函數(shù)的解析式;
(2)若對任意 , 恒成立,求實數(shù)的取值范圍;
(3)求實數(shù)和正整數(shù),使得在上恰有個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在△中,,分別為,的中點,為的中點, ,.將△沿折起到△的位置,使得平面平面, 為的中點,如圖2.
(Ⅰ)求證: 平面;
(Ⅱ)求F到平面A1OB的距離.
圖1 圖2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結論中,錯誤的序號是___________.①以直角坐標系中軸的正半軸為極軸的極坐標系中,曲線C的方程為,若曲線C上總存在兩個點到原點的距離為,則實數(shù)的取值范圍是;②在殘差圖中,殘差點比較均勻地落在水平帶狀區(qū)域中,說明選用的模型比較合適,這樣的帶狀區(qū)域寬度越寬,說明模型擬合精度越高;③設隨機變量,若,則;④已知為滿足能被9整除的正數(shù)的最小值,則的展開式中,系數(shù)最大的項為第6項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)如圖, 是圓的直徑,點是圓上異于的點, 垂直于圓所在的平面,且.
(Ⅰ)若為線段的中點,求證平面;
(Ⅱ)求三棱錐體積的最大值;
(Ⅲ)若,點在線段上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個人玩這個游戲,得出他們“心有靈犀”的概率為________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,E為DD1中點.
(1)求證:BD1∥平面ACE;
(2)求證:BD1⊥AC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF||AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60,G為BC的中點.
(Ⅰ)求證:FG||平面BED;
(Ⅱ)求證:平面BED⊥平面AED;
(Ⅲ)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AB=PA=1,AD,F是PB中點,E為BC上一點.
(1)求證:AF⊥平面PBC;
(2)當BE為何值時,二面角C﹣PE﹣D為45°.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com