【題目】已知常數(shù)m≠0,n≥2且n∈N,二項式(1+mx)n的展開式中,只有第6項的二項式系數(shù)最大,第三項系數(shù)是第二項系數(shù)的9倍.
(1)求m、n的值;
(2)若記(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n , 求a0﹣a1+a2﹣a3+…+(﹣1)nan除以6的余數(shù).
【答案】
(1)解:∵(1+mx)n的展開式中,只有第6項的二項式系數(shù)最大,
∴展開式共有11項,故n=10.
在(1+mx)10展開式中,第r+1項為 ,
∴第二項系數(shù)為 ,第三項系數(shù) ,
∴45m2=90m,∴m=2(m=0舍)
(2)解:在 中,
令x=﹣9,得: =(1﹣9m)n
=(1﹣9×2)10=(﹣17)10=1710=(18﹣1)10
=
=
= ,
∵ ,
∴a0﹣a1+a2﹣a3+…+(﹣1)nan除以6的余數(shù)為1
【解析】(1)利用二項式系數(shù)的性質求得n=10,再根據(jù)第三項系數(shù)是第二項系數(shù)的9倍,求得m的值.(2)令x=﹣9,可得a0﹣a1+a2﹣a3+…+(﹣1)nan=(18﹣1)10 , 再把它按照二項式定理展開,求得它除以6的余數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,其首項分別為a1、b1 , 且a1+b1=5,a1 , b1∈N* , 設cn=a ,則數(shù)列{cn}的前10項和等于( )
A.55
B.70
C.85
D.100
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品廠為了檢查甲乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本稱出它們的重量(單位:克),重量值落在(495,510]的產品為合格品,否則為不合格品.圖1是甲流水線樣本的頻率分布直方圖,表1是乙流水線樣本頻數(shù)分布表. 表1:(乙流水線樣本頻數(shù)分布表)
產品重量(克) | 頻數(shù) |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
(Ⅰ)若以頻率作為概率,試估計從甲流水線上任取5件產品,求其中合格品的件數(shù)X的數(shù)學期望; (Ⅱ)從乙流水線樣本的不合格品中任意取x2+y2=2件,求其中超過合格品重量的件數(shù)l:y=kx﹣2的分布列;(Ⅲ)由以上統(tǒng)計數(shù)據(jù)完成下面 列聯(lián)表,并回答有多大的把握認為“產品的包裝質量與兩條資動包裝流水線的選擇有關”.
甲流水線 | 乙流水線 | 合計 | |
合格品 | a= | b= | |
不合格品 | c= | d= | |
合計 | n= |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:下面的臨界值表供參考:
(參考公式: ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡2(bmod4).下面程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的i等于( )
A.4
B.8
C.16
D.32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二手車經銷商小王對其所經營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如下的對應數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
參考公式: , .
(1)若這兩個變量呈線性相關關系,試求y關于x的回歸直線方程 ;
(2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號汽車的收購價格為ω=0.03x2﹣1.81x+16.2萬元,根據(jù)(1)中所求的回歸方程,預測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大? (銷售一輛該型號汽車的利潤=銷售價格﹣收購價格)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ,a為常數(shù),且a∈(0,1).
(1)若x0滿足f(x0)=x0 , 則稱x0為f(x)的一階周期點,證明函數(shù)f(x)有且只有兩個一階周期點;
(2)若x0滿足f(f(x0))=x0 , 且f(x0)≠x0 , 則稱x0為f(x)的二階周期點,當a= 時,求函數(shù)f(x)的二階周期點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A、B、C的對邊分別是a,b,c,且A、B、C成等差數(shù)列
(1)若 ,求△ABC的面積
(2)若sinA、sinB、sinC成等比數(shù)列,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}前n項和為Sn .
(1)若Sn=2n﹣1,求數(shù)列{an}的通項公式;
(2)若a1= ,Sn=anan+1 , an≠0,求數(shù)列{an}的通項公式;
(3)設無窮數(shù)列{an}是各項都為正數(shù)的等差數(shù)列,是否存在無窮等比數(shù)列{bn},使得an+1=anbn恒成立?若存在,求出所有滿足條件的數(shù)列{bn}的通項公式;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com