【題目】若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡2(bmod4).下面程序框圖的算法源于我國(guó)古代聞名中外的《中國(guó)剩余定理》.執(zhí)行該程序框圖,則輸出的i等于(
A.4
B.8
C.16
D.32

【答案】C
【解析】解:模擬程序的運(yùn)行,可得 n=11,i=1
i=2,n=13
不滿足條件“n=2(mod 3)“,i=4,n=17,
滿足條件“n=2(mod 3)“,不滿足條件“n=1(mod 5)“,i=8,n=25,
不滿足條件“n=2(mod 3)“,i=16,n=41,
滿足條件“n=2(mod 3)“,滿足條件“n=1(mod 5)”,退出循環(huán),輸出i的值為16.
故選:C.
【考點(diǎn)精析】利用程序框圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)=lnx﹣mx+m.
(1)若f (x)≤0在x∈(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(2)在(1)的條件下,對(duì)任意的0<a<b,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖:
(1)如表是年齡的頻數(shù)分布表,求a,b的值;

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

50

50

a

150

b


(2)根據(jù)頻率分布直方圖估計(jì)志愿者年齡的平均數(shù)和中位數(shù);
(3)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的分別抽取多少人?
(4)在(3)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某高中隨機(jī)選取5名高一男生,其身高和體重的數(shù)據(jù)如表所示:

身高x(cm)

160

165

170

175

180

體重y(kg)

63

66

70

72

74

根據(jù)如表可得回歸方程 =0.56x+ ,據(jù)此模型可預(yù)報(bào)身高為172cm的高一男生的體重為(
A.70.12kg
B.70.29kg
C.70.55kg
D.71.05kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn= n2+ n(n∈N*),數(shù)列{bn}是首項(xiàng)為4的正項(xiàng)等比數(shù)列,且2b2 , b3﹣3,b2+2成等差數(shù)列. (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=anbn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù)m≠0,n≥2且n∈N,二項(xiàng)式(1+mx)n的展開(kāi)式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,第三項(xiàng)系數(shù)是第二項(xiàng)系數(shù)的9倍.
(1)求m、n的值;
(2)若記(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n , 求a0﹣a1+a2﹣a3+…+(﹣1)nan除以6的余數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣2ax+b,當(dāng)x∈[0,3]時(shí),|f(x)|≤1恒成立,則2a+b的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當(dāng)x∈[0, ]時(shí),求| + |的取值范圍;
(2)若g(x)=( + ,求當(dāng)k為何值時(shí),g(x)的最小值為﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(sinx,﹣2cosx), =(sinx+ cosx,﹣cosx),x∈R.函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案