在直線上,若存在過的直線交拋物線兩點,且,則稱點為“點”,那么下列結(jié)論中正確的是(   )

A.直線上的所有點都是“點” B.直線上僅有有限個點是“點” 
C.直線上的所有點都不是“點” D.直線上有無窮多個點是“點” 

A

解析試題分析:設(shè)


消去,整理得關(guān)于x的方程

恒成立,
∴方程恒有實數(shù)解,
∴故選A.
考點:直線與拋物線的位置關(guān)系
點評:本題主要考查了直線與圓錐曲線的位置關(guān)系.一般是把直線與圓錐曲線方程聯(lián)立,解決直線與圓錐曲線的交點個數(shù)時,利用判別式來判斷

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

若焦點在軸上的橢圓的離心率為,則的值為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知橢圓:和圓,過橢圓上一點引圓的兩
條切線,切點分別為. 若橢圓上存在點,使得,則橢圓離心率的取值范圍
是(     )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知直線與平面平行,P是直線上的一點,平面內(nèi)的動點B滿足:PB與直線 。那么B點軌跡是

A.雙曲線B.橢圓C.拋物線D.兩直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,軸截面為邊長為等邊三角形的圓錐,過底面圓周上任一點作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為(  )

A.  B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

拋物線的焦點為,點在此拋物線上,且,弦的中點在該拋物線準線上的射影為,則的最大值為(    )

A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)F1、F2是雙曲線的兩個焦點,P在雙曲線上,且滿足∠F1PF2=90°,則△PF1F2的面積是(    )

A.1 B. C.2 D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若方程C:是常數(shù))則下列結(jié)論正確的是(  )

A.,方程C表示橢圓B.,方程C表示雙曲線
C.,方程C表示橢圓D.,方程C表示拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知橢圓上的一點到橢圓一個焦點的距離為,則到另一焦點距離為 (    )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案