2.設(shè)函數(shù)f(x)為(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2016)2f(x+2016)-9f(-3)>0的解集為(-∞,-2019).

分析 通過觀察2f(x)+xf′(x)>x2,不等式的左邊像一個函數(shù)的導(dǎo)數(shù),又直接寫不出來,對該不等式兩邊同乘以x,由x<0,可得到2xf(x)+x2f′(x)<x3,而這時不等式的左邊是(x2f(x))′,所以構(gòu)造函數(shù)F(x)=x2f(x),則能判斷該函數(shù)在(-∞,0)上是減函數(shù).這時F(x+2016)=(x+2016)2f(x+2016),F(xiàn)(-3)=9f(-3),而到這會發(fā)現(xiàn)不等式(x+2016)2f(x+2016)-9f(-3)>0可以變成F(x+2016)>F(-3),從而解這個不等式便可,而這個不等式利用F(x)的單調(diào)性可以求解.

解答 解:由2f(x)+xf′(x)>x2,(x<0);
得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0;
令F(x)=x2f(x);
則當(dāng)x<0時,F(xiàn)'(x)<0,即F(x)在(-∞,0)上是減函數(shù);
∴F(x+2016)=(x+2016)2f(x+2016),F(xiàn)(-3)=9f(-3);
即不等式等價為F(x+2016)-F(-3)>0;
∵F(x)在(-∞,0)是減函數(shù);
∴由F(x+2016)>F(-3)得,x+2016<-3,
∴x<-2019;
故答案為:(-∞,-2019).

點評 本題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,兩個函數(shù)乘積的導(dǎo)數(shù)的求法,而構(gòu)造函數(shù)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是AA1,CC1的中點,且BE⊥B1F.
(1)求證:B1F⊥平面BEC1
(2)求二面角A-BC1-E的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個多面體的三視圖,若該多面體的所有頂點都在球O的表面上,則球O的表面積是( 。
A.B.12πC.16πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=ln(x+1)+e-x的單調(diào)遞增區(qū)間為(  )
A.(-1,+∞)B.(0,+∞)C.(e,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某公司為了增加銷售額,經(jīng)過了一系列的宣傳方案,經(jīng)統(tǒng)計廣告費用x萬元與銷售額y萬元歷史數(shù)據(jù)如表:
x2356
y3579
(1)求銷售額y關(guān)于廣告費用x的線性回歸方程;
(2)若廣告費用投入8萬元,請預(yù)測銷售額會達到多少萬元?
參考公式b=$\frac{{\sum_{i=1}^n{x_i}•{y_i}-n\overline x•\overline y}}{{\sum_{i=1}^n{\;}{x_i}^2-n{{\overline x}^2}}}$,a=y-bx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.調(diào)查某公司的五名推銷員,某工作年限與年推銷金額如表:
推銷員ABCDE
工作年限x(萬元)23578
年推銷金額y(萬元)33.546.58
(Ⅰ)畫出年推銷金額y關(guān)于工作年限x的散點圖,并從散點圖中發(fā)現(xiàn)工作年限與年推銷金額之間關(guān)系的一般規(guī)律;
(Ⅱ)利用最小二乘法求年推銷金額y關(guān)于工作年限x的回歸直線方程;
(Ⅲ)利用(Ⅱ)中的回歸方程,預(yù)測工作年限是10年的推銷員的年推銷金額.
附:$\widehat$=$\frac{\sum_{i-1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i-1}^{n}{(x}_{i}-\overline{x})}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.二次函數(shù)y=3(x+1)2-1的定義域是R,值域是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實數(shù)a,b滿足a>b,則下列不等式中成立的是( 。
A.a3>b3B.a2>b2C.$\frac{1}{a}$>$\frac{1}$D.a2>ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,正方形ABCD的邊長為1,P、Q分別為邊AB、DA上的點,當(dāng)△APQ的周長為2時,求∠PCQ的大。

查看答案和解析>>

同步練習(xí)冊答案