已知f(x)為二次函數(shù),且f(-1)=2,f′(0)=0,f(x)dx=-2,
(1)求f(x)的解析式;
(2)求f(x)在[-1,1]上的最大值與最小值.
解:(1)設(shè)f(x)=ax2+bx+c(a≠0),
則f′(x)=2ax+b.
由f(-1)=2,f′(0)=0,
得即
∴f(x)=ax2+2-a.
又f(x)dx=(ax2+2-a)dx
=[ax3+(2-a)x]=2-a=-2,
∴a=6,從而f(x)=6x2-4.
(2)∵f(x)=6x2-4,x∈[-1,1].
∴當(dāng)x=0時(shí),[f(x)]min=-4;
當(dāng)x=±1時(shí),[f(x)]max=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知x>0,符號(hào)[x]表示不超過(guò)x的最大整數(shù),若函數(shù)f(x)=-a(x≠0)有且僅有3個(gè)零點(diǎn),則a的取值范圍是( )
(A)(,] (B)[,]
(C)(,] (D)[,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)=3x2-x+m(x∈R),g(x)=ln x.
(1)若函數(shù)f(x)與g(x)的圖象在x=x0處的切線(xiàn)平行,求x0的值;
(2)求當(dāng)曲線(xiàn)y=f(x)與y=g(x)有公共切線(xiàn)時(shí),實(shí)數(shù)m的取值范圍;
(3)在(2)的條件下,求函數(shù)F(x)=f(x)-g(x)在區(qū)間[,1]上的最值(用m表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com