定義:在平面直角坐標(biāo)系xOy中,任意兩點(diǎn)A(x1,y1),B(x2,y2)之間的“直角距離”為d(A,B)=|x1-x2|+|y1-y2|;平面內(nèi)一點(diǎn)C到一條直線l的“直角距離”為點(diǎn)C與直線l上的每一點(diǎn)的“直角距離”的最小值.已知點(diǎn)A(1,1),那么d(A,0)=
 
;若動(dòng)點(diǎn)M(x,y)與點(diǎn)C(-1,0),D(1,0)的“直角距離”之和為4,則點(diǎn)M到直線x-2y+8=0的“直角距離”的最小值為
 
考點(diǎn):進(jìn)行簡單的合情推理,點(diǎn)到直線的距離公式
專題:綜合題,推理和證明
分析:根據(jù)新定義直接求出d(A,O)即可;先求出M的坐標(biāo),再求出點(diǎn)M到直線x-2y+8=0的“直角距離”的最小值.
解答: 解:由題意在平面直角坐標(biāo)系xOy中,任意兩點(diǎn)A(x1,y1),B(x2,y2)之間的“直角距離”為d(A,B)=|x1-x2|+|y1-y2|;
已知點(diǎn)A(1,1),那么d(A,O)=|1-0|+|1-0|=2.
∵動(dòng)點(diǎn)M(x,y)與點(diǎn)C(-1,0),D(1,0)的“直角距離”之和為4,
∴M(0,1),
直線x-2y+8=0上取點(diǎn)(2y-8,y),
∴點(diǎn)M到直線x-2y+8=0的“直角距離”為|2y-8|+|y-1|,
∵|2y-8|+|y-1|=
-3y+9,y<1
-y+7,1≤y≤4
3y-9,y>4

∴點(diǎn)M到直線x-2y+8=0的“直角距離”的最小值為3.
故答案為:2,3
點(diǎn)評(píng):本題是基礎(chǔ)題,考查學(xué)生對(duì)新定義的理解,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2ax+a2-1
x2+1
,其中a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;
(2)求f(x)的單調(diào)區(qū)間;
(3)若f(x)在[0,2)上存在最大值和最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O的直徑過點(diǎn)B作⊙O的切線BC,OC交⊙O于點(diǎn)E,AE的延長線交BC于點(diǎn)D,若AB=BC=2,則CD的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在x使不等式|x-a|+|x-1|≤2|a|成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的反函數(shù)是f-1(x)=1+x2(x<0),則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將三顆骰子各擲一次,設(shè)事件A=“三個(gè)點(diǎn)數(shù)都不相同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則概率P(A|B)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)1和2之間插入n個(gè)正數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增等比數(shù)列,將這n+2個(gè)數(shù)的乘積記為An,令an=log2An,n∈N*
(1)數(shù)列{an}的通項(xiàng)公式為an=
 

(2)Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是[-1,2],則函數(shù)f(3x-1)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)滿足條件
x+y-3≤0
x-y-1≤0
x-1≥0
,O為坐標(biāo)原點(diǎn),A(2,-1),則|
OP
|•cos∠AOP的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案