若二次函數(shù)f(x)≥0的解的區(qū)間是[-1,5],則不等式(1-x)•f(x)≥0的解為
[-1,1]∪[5,+∞)
[-1,1]∪[5,+∞)
分析:由已知可得:不等式(1-x)•f(x)≥0?(x-1)(x+1)(x-5)≥0,解出即可.
解答:解:∵二次函數(shù)f(x)≥0的解的區(qū)間是[-1,5],∴f(x)=0的根分別是-1,5,且二次項(xiàng)的系數(shù)<0.
∴不等式(1-x)•f(x)≥0?(x-1)(x+1)(x-5)≥0,
如圖所示:上述不等式解集為[-1,1]∪[5,+∞).
故答案為[-1,1]∪[5,+∞).
點(diǎn)評:利用已知條件把已知不等式正確等價(jià)轉(zhuǎn)化是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2-4x+c的值域?yàn)閇0,+∞),則
a
c2+4
+
c
a2+4
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(-2),且函數(shù)的f(x)的一個(gè)零點(diǎn)為1.
(Ⅰ) 求函數(shù)f(x)的解析式;
(Ⅱ)對任意的x∈[
12
,+∞)
,4m2f(x)+f(x-1)≥4-4m2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f (x)=ax2+bx+c(a≠0)的部分對應(yīng)值如下所示:
x -2 1 3
f (x) 0 -6 0
則不等式f (x)<0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)且x∈R).
(1)若函數(shù)f(x)為偶函數(shù),且滿足f(x)=2x有兩個(gè)相等實(shí)根,求a,b的值;
(2)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求函數(shù)f(x)的表達(dá)式;
(3)在(2)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若二次函數(shù)f(x)=ax2+bx的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則二次函數(shù)f(x)的頂點(diǎn)在( 。
A、第四象限B、第三象限C、第二象限D、第一象限

查看答案和解析>>

同步練習(xí)冊答案