15.復(fù)數(shù)$\frac{{3-5{i}}}{{1+{i}}}$的實部與虛部之和為(  )
A.5B.3C.-3D.-5

分析 直接利用復(fù)數(shù)的除法運算法則化簡求解即可.

解答 解:$\frac{{3-5{i}}}{{1+{i}}}=\frac{{(3-5{i})(1-{i})}}{{(1+{i})(1-{i})}}=\frac{{-2-8{i}}}{2}=-1-4{i}$,其實部與虛部之和為-5.
故選:D.

點評 本題考查復(fù)數(shù)的乘除運算法則的應(yīng)用,復(fù)數(shù)的基本概念,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則ω和φ的值分別是( 。
A.ω=2,φ=$\frac{π}{4}$B.ω=2,φ=-$\frac{π}{4}$C.ω=$\frac{1}{2}$,φ=$\frac{π}{8}$D.ω=$\frac{1}{2}$,φ=-$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)$f(x)=lnx+\frac{k}{x},k∈R$.若曲線y=f(x)在點(e,f(e))處的切線與直線x-2=0垂直,求f(x)的單調(diào)遞減區(qū)間和極小值(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)隨機變量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a-2),則a=( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題p:若a>b,則|a|>|b|;命題q:當(dāng)a=0時,f(x)=xln(x+a)2為奇函數(shù),則下列命題中為真命題的是( 。
A.(¬p)∨qB.p∨(¬q)C.p∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x,y滿足不等式組$\left\{\begin{array}{l}x-y+2≥0\\ 2x-y≤0\\ x≥0\end{array}\right.$,則z=2y-x的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)Sn是等差數(shù)列{an}的前n項和,已知a2=3,a6=11,則S7等于( 。
A.13B.15C.49D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)列{an}的前n項和為Sn,且滿足${a_n}+{a_{n+1}}=\frac{1}{2}$(n∈N*),a2=2,則S21=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在三角形ABC中,∠B=$\frac{π}{3}$,AB=1,BC=2,點D在邊AC上,且$\overrightarrow{AD}$=λ$\overrightarrow{AC}$,λ∈R,若$\overrightarrow{BD}$•$\overrightarrow{BC}$=2,則λ=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案