用零點方法求方程x2+2x+
1
x
=0的近似解(精確到0.1).
考點:二分法求方程的近似解
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由二分法求方程的近似解.
解答: 解:令f(x)=x2+2x+
1
x

則f(-2)=4-4-
1
2
=-
1
2
,f(-3)=9-6-
1
3
>0,
故方程x2+2x+
1
x
=0的近似解在(-3,-2)上,
又∵f(-
5
2
)=0.85,
f(-2.25)=0.118,
f(-2.125)=-0.20,
故方程x2+2x+
1
x
=0的近似解為-2.2.
點評:本題考查了方程的根與函數(shù)的零點的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8
3
27
2
之間插入兩個數(shù),使這四個數(shù)成等比數(shù)列,則插入的兩個數(shù)的乘積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
|x-1|
(x≠1)
1(x=1)
,若函數(shù)g(x)=f(x)+a有三個零點x1,x2,x3,則x12+x22+x32=( 。
A、13B、5
C、a2D、2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an},{bn}均為等差數(shù)列,且a2=8,a6=16,b2=4,b6=a6,則由{an},{bn}的公共項組成的新數(shù)列{cn}的通項公式cn等于( 。
A、3n+4B、6n+2
C、6n+4D、2n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x-2
0
,
x>0
x≤0
,則f(f(1))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A和C取什么值時,直線Ax-2y-1=0與直線6x-4y+C=0
(1)平行?
(2)重合?
(3)相交?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α∈(
π
2
,π),β∈(0,
π
2
),則α-β的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x∈R,x2-2ax+a>0”是真命題,則2a2+
1
a
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知頂點B(1,0),高AD所在的直線方程為x-2y+4=0,中線CE所在的直線方程為7x+y-12=0上,
(1)求頂點C的坐標(biāo);
(2)求邊AC所在的直線方程.

查看答案和解析>>

同步練習(xí)冊答案