4.今天是星期日,再過233天是( 。
A.星期一B.星期二C.星期五D.星期六

分析 把233=(7+1)11 按照二項式定理展開,可得它除以7的余數(shù),從而得出結(jié)論.

解答 解:233=(7+1)11=${C}_{11}^{0}$•711+${C}_{11}^{1}$•710+${C}_{11}^{2}$•79+…+${C}_{11}^{10}$•7+1,
顯然,除了最后一項外,其余的各項都能被7整除,故233除以7的余數(shù)為1,
故今天是星期日,再過233天是星期一,
故選:A.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知x∈R,試比較2x2-3x+3與$\frac{2}{{2}^{x}+{2}^{-x}}$的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.沿x軸正方向運動的質(zhì)點,在任意位置x米處,所受的力為F(x)=3x2牛頓,則質(zhì)點從坐標原點運動到4米處,力F(x)所做的功是( 。
A.74焦耳B.72焦耳C.70焦耳D.64焦耳

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.學校為了解學生的數(shù)學學習情況,在全校高一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡數(shù)學不喜歡數(shù)學合計
男生602080
女生101020
合計7030100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“男生和女生在喜歡數(shù)學方面有差異”;
(2)在被調(diào)查的女生中抽出5名,其中2名喜歡數(shù)學,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡數(shù)學的概率.
附:參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.1000.0500.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知圓O的半徑為定長為r,A是圓O所在平面上的一個定點,P是圓上任意一點,線段AP的垂直平分線L和直線OP相交于點M,當點P在圓上運動時,點M的軌跡可能是①點;②直線;③圓;④橢圓;⑤雙曲線;⑥拋物線.其中正確的是( 。
A.④⑤B.①③④⑤C.①②③④⑤D.①②③④⑤⑥

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.點(1,-1)到直線3x-4y=5的距離為( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.禽流感是家禽養(yǎng)殖業(yè)的最大威脅,為檢驗某種藥物預防禽流感的效果,取80只家禽進行對比試驗,得到如下丟失數(shù)據(jù)的列聯(lián)表:(其中c,d,M,N表示丟失的數(shù)據(jù)).
患病未患病總計
沒服用藥251540
服用藥cd40
總計MN80
工作人員曾記得3c=d.
(1)求出列聯(lián)表中數(shù)據(jù)c,d,M,N的值;
(2)能否在犯錯誤率不超過0.005的前提下認為藥物有效?
下面的臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知正方體的棱長為1,則其外接球的表面積為( 。
A.B.πC.$\frac{\sqrt{3}}{2}$πD.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知兩點A(2,1)和B(-1,1)到直線mx+y+3=0距離相等,則m=( 。
A.0或-2B.-2或-8C.-2或-6D.0或-8

查看答案和解析>>

同步練習冊答案