6.下列命題中,是真命題的是(  )
A.?x0∈R,e${\;}^{{x}_{0}}$≤0
B.已知a,b為實(shí)數(shù),則a+b=0的充要條件是$\frac{a}$=-1
C.?x∈R,2x>x2
D.已知a,b為實(shí)數(shù),則a>1,b>1是ab>1的充分條件

分析 A.根據(jù)指數(shù)函數(shù)的性質(zhì)進(jìn)行判斷,
B.根據(jù)充分條件和必要條件的定義進(jìn)行判斷,
C.當(dāng)x=2時(shí),不等式不成立,
D.根據(jù)充分條件和必要條件的定義進(jìn)行判斷.

解答 解:A.?x∈R,ex>0,則?x0∈R,e${\;}^{{x}_{0}}$≤0為假命題.
B.當(dāng)a=b=0時(shí),滿足a+b=0但$\frac{a}$=-1不成立,故B錯(cuò)誤,
C.當(dāng)x=2時(shí),2x=x2,則2x>x2為假命題.
D.若a>1,b>1則ab>1成立,即a>1,b>1是ab>1的充分條件成立,故D正確
故選:D

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及充分條件和必要條件的判斷,以及含有量詞的命題的真假判斷,綜合性較強(qiáng),難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.己知函數(shù)f(x)=x2+(a+1)x+b
(1)若函數(shù)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)函數(shù)f(x)的圖象過點(diǎn)(3,3)且滿足f(x)≥x恒成立,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|-1<x<1},N={x|x2<4,x∈Z},則( 。
A.M∩N={0}B.N⊆MC.M⊆ND.M∪N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=2,AC=3,G為△ABC的重心,若AG=$\frac{4}{3}$,則△ABC的面積為( 。
A.$\frac{\sqrt{6}}{4}$B.$\frac{3\sqrt{6}}{16}$C.$\sqrt{15}$D.$\frac{3\sqrt{15}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“因?yàn)榕己瘮?shù)的圖象關(guān)于y軸對(duì)稱,而函數(shù)f(x)=x2+x是偶函數(shù),所以f(x)=x2+x的圖象關(guān)于y軸對(duì)稱”,在上述演繹推理中,所得結(jié)論錯(cuò)誤的原因是( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤D.大前提與推理形式都錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.求值:$\frac{{\sqrt{3}}}{sin20°}-\frac{1}{cos20°}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.實(shí)數(shù)x,y滿足(1+i)x+(1-i)y=2,設(shè)z=x+yi,則下列說法錯(cuò)誤的是(  )
A.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限B.|z|=$\sqrt{2}$
C.z的虛部是iD.z的實(shí)部是1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1的側(cè)面AA1C1C是矩形,側(cè)面AA1C1C⊥側(cè)面AA1B1B,且AB=4AA1=4,∠BAA1=60°,D是AB的中點(diǎn).
(Ⅰ)求證:AC1∥平面CDB1;
(Ⅱ)求證:DA1⊥平面AA1C1C
(Ⅲ)若AA1=A1C1,點(diǎn)M在棱A1C1上,且A1M=λA1C1,若二面角M-AD-A1為30°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.28+6$\sqrt{5}$B.40C.$\frac{40}{3}$D.30+6$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案