分析 (1)通過(guò)Sn+Sn-1=an2(n≥2)與Sn+1+Sn=an+12作差、整理可知數(shù)列{an}是以首項(xiàng)、公差均為1的等差數(shù)列,計(jì)算即得結(jié)論;
(2)通過(guò)(1)計(jì)算、變形可知bn=$\frac{n×(n+1)×…×(n+k+1)-(n-1)×n×…×(n+k)}{k+2}$,并項(xiàng)相加即得結(jié)論;
(3)通過(guò)(2)計(jì)算、變形可知Tn(1)=1×2+2×3+…+n(n+1)=12+22+32+…+n2+$\frac{n(n+1)}{2}$=$\frac{n(n+1)(n+2)}{3}$,進(jìn)而可得結(jié)論.
解答 解:(1)∵Sn+Sn-1=an2(n≥2),
∴Sn+1+Sn=an+12,
兩式相減得:an+1+an=${{a}_{n+1}}^{2}$-${{a}_{n}}^{2}$,
,∵an>0,${{a}_{n+1}}^{2}$-${{a}_{n}}^{2}$=(an+1+an)(an+1-an),
∴an+1-an=1,
又∵a1=1,
∴數(shù)列{an}是以首項(xiàng)、公差均為1的等差數(shù)列,
∴通項(xiàng)公式an=n;
(2)由(1)可知,b1=1×2×3×…×k×(k+1)
=$\frac{1×2×3×…×(k+2)-0×1×2×…×(k+1)}{k+2}$,
b2=2×3×…×(k+1)×(k+2)
=$\frac{2×3×4×…×(k+3)-1×2×3×…×(k+2)}{k+2}$,
b3=3×4×…×(k+2)×(k+3)
=$\frac{3×4×5×…×(k+4)-2×3×4×…×(k+3)}{k+2}$,
…
bn=$\frac{n×(n+1)×…×(n+k+1)-(n-1)×n×…×(n+k)}{k+2}$,
∴Tn(k)=b1+b2+…bn
=$\frac{1×2×3×…×(k+2)-0×1×2×…×(k+1)}{k+2}$+$\frac{2×3×4×…×(k+3)-1×2×3×…×(k+2)}{k+2}$+…+$\frac{n×(n+1)×…×(n+k+1)-(n-1)×n×…×(n+k)}{k+2}$
=$\frac{n×(n+1)×…×(n+k+1)-0}{k+2}$
=$\frac{n×(n+1)×…×(n+k+1)}{k+2}$;
(3)由(2)可知,Tn(k)=$\frac{n×(n+1)×…×(n+k+1)}{k+2}$,
當(dāng)k=1時(shí),Tn=1×2+2×3+…+n(n+1)
=1×(1+1)+2×(2+1)+…+n2+n
=12+22+32+…+n2+(1+2+3+…+n)
=12+22+32+…+n2+$\frac{n(n+1)}{2}$
=$\frac{n(n+1)(n+2)}{3}$
∴12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com