已知|
a
|=4,
e
是單位向量,向量
a
e
的夾角是
4
,則|
a
+
2
e
|=( 。
A、2
2
B、4+
2
C、
10
D、
26
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專題:平面向量及應(yīng)用
分析:利用數(shù)量積運(yùn)算性質(zhì)即可得出.
解答: 解:∵|
a
|=4,
e
是單位向量,向量
a
e
的夾角是
4

a
e
=4×1×cos
4
=-2
2

∴|
a
+
2
e
|=
a
2
+2
e
2
+2
2
a
e
=
16+2+2
2
×(-2
2
)
=
10

故選:C.
點(diǎn)評(píng):本題考查了數(shù)量積定義及其運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
,
b
,
e
滿足|
e
|=1,
a
e
=1,
b
e
=2,|
a
-
b
|=2,則
a
b
的最小值為( 。
A、
1
2
B、
5
4
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x=3secφ
y=4tanφ
(φ為參數(shù))的一個(gè)焦點(diǎn)為(  )
A、(3,0)
B、(4,0)
C、(5,0)
D、(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,下列結(jié)論正確的個(gè)數(shù)是(  )
(1)點(diǎn)P在曲線C上,則點(diǎn)P的所有極坐標(biāo)滿足曲線C的極坐標(biāo)方程.
(2)ρ=sin(θ+
π
4
)與ρ=sin(θ-
π
4
)表示同一條曲線;
 (3)ρ=2與ρ=-2表示同一條曲線.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中A<B時(shí),下列說法正確的是( 。
A、sinA>sinB
B、sinA<sinB
C、sinA≤sinB
D、sinA與sinB大小不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3,0),
b
=(-5,5),則
a
b
的夾角為(  )
A、
π
4
B、
4
C、
π
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中ai∈{1,2,3}(i=0,1,2,3}且a3≠0,則A中所有元素之和等于( 。
A、3 240
B、3 120
C、2 997
D、2 889

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(x2-5x+6)的單調(diào)遞減區(qū)間為( 。
A、(2,+∞)
B、(3,+∞)
C、(-∞,3)
D、(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是根據(jù)某校10位高一同學(xué)的身高(單位:cm)畫出的莖葉圖,其中左邊的數(shù)字從左到右分別表示學(xué)生身高的百位數(shù)字和十位數(shù)字,右邊的數(shù)字表示學(xué)生身高的個(gè)位數(shù)字,從圖中可以得到這10位同學(xué)身高的中位數(shù)和眾數(shù)分別是( 。
A、161、155
B、163、155
C、162、163
D、162、155和163

查看答案和解析>>

同步練習(xí)冊(cè)答案