△ABC中A<B時(shí),下列說(shuō)法正確的是( 。
A、sinA>sinB
B、sinA<sinB
C、sinA≤sinB
D、sinA與sinB大小不定
考點(diǎn):正弦定理
專(zhuān)題:解三角形
分析:由A小于B,利用三角形邊角關(guān)系判斷得到a小于b,再利用正弦定理化簡(jiǎn)即可得到結(jié)果.
解答: 解:由A<B,得到a<b,
利用正弦定理
a
sinA
=
b
sinB
=2R得:a=2RsinA,b=2RsinB,
則sinA<sinB.
故選:B.
點(diǎn)評(píng):此題考查了正弦定理,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=loga(2-ax)(a>0且a≠1)在[0,1]上是x的減函數(shù),則a的取值范圍是( 。
A、(0,1)
B、(1,2)
C、(0,2)
D、[2,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,則 (1-i)2的值等于( 。
A、2-2iB、2+2i
C、-2iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
OB
的夾角為θ,|
OA
|=2,|
OB
|=1,
OP
=t
OA
OQ
=(1-t)
OB
,|
PQ
|在t0時(shí)取得最小值.當(dāng)0<t0
1
5
時(shí),夾角θ的取值范圍為( 。
A、(0,
π
3
B、(
π
3
,
π
2
C、(
π
2
,
3
D、(0,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f′(x0)=-2,則
lim
k→0
f[x0-
1
2
k]-f(x0)
k
等于( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=4,
e
是單位向量,向量
a
e
的夾角是
4
,則|
a
+
2
e
|=(  )
A、2
2
B、4+
2
C、
10
D、
26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于平面α和兩直線m、n,下列表述正確的是(  )
A、m?α,n?α,則m,n相交
B、若m∥α,m∥n,則n∥α
C、若m?α,n∥α,則m∥n
D、若m∥α,則m平行于α內(nèi)的無(wú)數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=1200+
2
75
x3(萬(wàn)元),已知產(chǎn)品單價(jià)P(萬(wàn)元)與產(chǎn)品件數(shù)x滿(mǎn)足:P2=
k
x
,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬(wàn)元,產(chǎn)量定為多少件時(shí)總利潤(rùn)最大?(  )
A、23B、24C、25D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|(
1
2
x
1
4
},B={x|log2(x-1)<2},則A∩B等于( 。
A、(-∞,5)
B、(-∞,2)
C、(1,2)
D、(2,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案