8.求證:“若m>0,則方程x2+x-m=0有實(shí)根”為真命題.

分析 根據(jù)一元二次方程根的判別式△的符號(hào)判斷即可.

解答 證明:若m>0,則△=4+4m>0,
方程有實(shí)根,
故“m>0,則方程x2+x-m=0有實(shí)根”為真命題.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查根的判別式的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)y=$\sqrt{2}$cos2x的圖象,只需將函數(shù)y=$\sqrt{2}$sin(4x+$\frac{π}{4}$)的圖象上所有點(diǎn)的( 。
A.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{8}$個(gè)單位長度
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{4}$個(gè)單位長度
C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{8}$個(gè)單位長度
D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{4}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=|x|(1+ax),設(shè)關(guān)于x的不等式f(x+a)>f(x)對(duì)任意x∈R恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=2x,g(x)=-$\frac{3x-1}{x}$,則f(x)•g(x)=2-6x,(x≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對(duì)任意x∈R,函數(shù)y=(k2-k-2)x2-(k-2)x-1的圖象始終在x軸下方,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=sin(ωx+φ),ω>0,|φ|<$\frac{π}{2}$的部分圖象如圖所示,則f($\frac{π}{2}$)為(  )
A.1B.-1C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線$y=-\frac{{\sqrt{3}}}{3}x+1$和x軸,y軸分別交于點(diǎn)A,B,以線段AB為一邊在第一象限內(nèi)作等邊△ABC,則點(diǎn)C的坐標(biāo)為$({\sqrt{3},2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將號(hào)碼分別為1,2,3,4的四個(gè)小球放入一個(gè)袋中,這些小球僅號(hào)碼不同,其余完全相同,甲從袋中摸出一個(gè)小球,其號(hào)碼為a,放回后,乙從此袋中再摸出一個(gè)小球,其號(hào)碼為b,則使不等式a-2b+4<0成立的事件發(fā)生的概率為(  )
A.$\frac{1}{8}$B.$\frac{3}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案