A. | (-∞,-1)∪(1,+∞) | B. | (-1,0)∪(0,1) | C. | (1,+∞) | D. | (0,1) |
分析 f(x)=|x|(1+ax)=0,可得x=0或-$\frac{1}{a}$,根據(jù)y=f(x+a)是由y=f(x)的圖象向左(a>0)或向右(a<0)平移|a|個單位得到,結(jié)合關(guān)于x的不等式f(x+a)>f(x)對任意x∈R恒成立,可得$\left\{\begin{array}{l}{a>0}\\{-a>-\frac{1}{a}}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{-a<-\frac{1}{a}}\end{array}\right.$,即可得出結(jié)論.
解答 解:f(x)=|x|(1+ax)=0,可得x=0或-$\frac{1}{a}$,
y=f(x+a)是由y=f(x)的圖象向左(a>0)或向右(a<0)平移|a|個單位得到,
∵關(guān)于x的不等式f(x+a)>f(x)對任意x∈R恒成立,
∴$\left\{\begin{array}{l}{a>0}\\{-a>-\frac{1}{a}}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{-a<-\frac{1}{a}}\end{array}\right.$,
∴a<-1或a>1,
故選A.
點評 本題考查函數(shù)的圖象變換,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2} | B. | {0,1,2,3} | C. | {0,1} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+y2=2 | B. | (x-1)2+y2=4 | C. | y2=2x | D. | y2=-2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com