【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是線段BF上一點(diǎn),AB=AF=BC.
(Ⅰ)若EG∥平面ABC,求 的值;
(Ⅱ)求二面角A﹣BF﹣E的大小的正弦值.
【答案】解:(Ⅰ)∵平面ABC⊥平面ACEF,且平面ABC∩平面ACEF=AC, AF⊥AC,∴AF⊥平面ABC,則平面ABF⊥平面ABC,
過(guò)G作GD⊥AB,垂足為D,則GD⊥平面ABC,連接CD,
由GD⊥平面ABC,AF⊥平面ABC,AF∥CE,可得GD∥CE,
又EG∥平面ABC,∴EG∥CD,則四邊形GDCF為平行四邊形,
∴GD=CE= ,
∴ = ;
(Ⅱ)由(Ⅰ)知AF⊥AB,AF⊥BC
∵BC⊥AB,∴BC⊥平面ABF.
如圖,以A為原點(diǎn),建立空間直角坐標(biāo)系A(chǔ)﹣xyz.
則F(0,0,2),B(2,0,0),C(2,2,0),E(2,2,1),
=(0,2,0)是平面ABF的一個(gè)法向量.
設(shè)平面BEF的法向量 =(x,y,z),則
,令y=1,則z=﹣2,x=﹣2, =(﹣2,1,﹣2),
∴cos< , >= = ,
∴二面角A﹣BF﹣E的正弦值為 .
【解析】(Ⅰ)由平面ABC⊥平面ACEF,且平面ABC∩平面ACEF=AC,可得AF⊥AC,則AF⊥平面ABC,得到平面ABF⊥平面ABC,過(guò)G作GD⊥AB,垂足為D,則GD⊥平面ABC,連接CD,可證得則四邊形GDCF為平行四邊形,從而得到GD=CE= ,則G為BF的中點(diǎn),得到 的值;(Ⅱ)建立空間直角坐標(biāo)系,利用向量法即可求二面角E﹣BF﹣A的余弦值.
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,它在點(diǎn)處的切線為直線l.
(1)求直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與的交點(diǎn)為P1,P2,求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.
(Ⅰ)求證:CE∥平面PAD;
(Ⅱ)求PD與平面PCE所成角的正弦值;
(Ⅲ)在棱AB上是否存在一點(diǎn)F,使得平面DEF⊥平面PCE?如果存在,求 的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知關(guān)于的不等式,其中.
(1)當(dāng)變化時(shí),試求不等式的解集;
(2)對(duì)于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若 能,求出使得集合中元素個(gè)數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義[x]表示不超過(guò)x的最大整數(shù),例如[2.11]=2,[﹣1.39]=﹣2,執(zhí)行如下圖所示的程序框圖,則輸出m的值為 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (φ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρcos(θ﹣ )=2 .
(Ⅰ)求曲線C在極坐標(biāo)系中的方程;
(Ⅱ)求直線l被曲線C截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和,a1=b1=1,S2=.
(1)若b2是a1,a3的等差中項(xiàng),求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若an∈N+,數(shù)列{}是公比為9的等比數(shù)列,求證:+++…+<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,其中m,n,k∈R.
(1)若m=n=k=1,求f(x)的單調(diào)區(qū)間;
(2)若n=k=1,且當(dāng)x≥0時(shí),f(x)≥1總成立,求實(shí)數(shù)m的取值范圍;
(3)若m>0,n=0,k=1,若f(x)存在兩個(gè)極值點(diǎn)x1、x2 , 求證: <f(x1)+f(x2)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AC= ,BC= ,△ABC的面積為 ,若線段BA的延長(zhǎng)線上存在點(diǎn)D,使∠BDC= ,則CD= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com