分析 根據(jù)向量模長(zhǎng)的關(guān)系,利用平方法轉(zhuǎn)化為向量數(shù)量積公式,解一元二次方程即可.
解答 解:∵平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,且|$\overrightarrow b}$|=1,|${\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,
∴平方得|${\overrightarrow a$|2+4|$\overrightarrow b}$|2+4${\overrightarrow a$•$\overrightarrow b}$=12,
即|${\overrightarrow a$|2+4+4|${\overrightarrow a$|•|$\overrightarrow b}$|cos$\frac{π}{3}$=12,
即|${\overrightarrow a$|2+2|${\overrightarrow a$|-8=0,
則(|${\overrightarrow a$|-2)(|${\overrightarrow a$|+4)=0,
則|${\overrightarrow a$|=2,或|${\overrightarrow a$|=-4,(舍)
故答案為:2.
點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)向量模長(zhǎng)的關(guān)系利用平方法轉(zhuǎn)化為一元二次方程是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $\frac{1}{7}$ | C. | 1 | D. | $-\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,0] | C. | (-∞,-$\frac{7}{2}$] | D. | (-∞,-$\frac{7}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{6}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\sqrt{3}$-1,$\frac{2}{3}$] | B. | [$\sqrt{3}$-1,$\frac{\sqrt{6}}{3}$] | C. | [2-$\sqrt{3}$,$\frac{2}{3}$] | D. | [2-$\sqrt{3}$,$\frac{\sqrt{6}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com