設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(-2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(-2)
D.函數(shù)f(x)有極大值f(-2)和極小值f(2)
D
解析 利用極值的存在條件判定.
當(dāng)x<-2時(shí),y=(1-x)f′(x)>0,得f′(x)>0;
當(dāng)-2<x<1時(shí),y=(1-x)f′(x)<0,得f′(x)<0;
當(dāng)1<x<2時(shí),y=(1-x)f′(x)>0,得f′(x)<0;
當(dāng)x>2時(shí),y=(1-x)f′(x)<0,得f′(x)>0,
∴f(x)在(-∞,-2)上是增函數(shù),在(-2,1)上是減函數(shù),在(1,2)上是減函數(shù),在(2,+∞)上是增函數(shù),
∴函數(shù)f(x)有極大值f(-2)和極小值f(2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)其中b為常數(shù).
(1)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(2)若求的極值點(diǎn);
(3)求證對(duì)任意不小于3的正整數(shù)n,不等式都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=5,S5=15,則數(shù)列的前100項(xiàng)和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知x,y滿(mǎn)足約束條件當(dāng)目標(biāo)函數(shù)z=ax+by(a>0,b>0)在該約束條件下取到最小值2時(shí),a2+b2的最小值為( )
A.5 B.4 C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=
(1)證明:f(x)+f(1-x)=;
(2)若數(shù)列{an}的通項(xiàng)公式為an=f()(m∈N*,n=1,2,…,m),求數(shù)列{an}的前m項(xiàng)和Sm;
(3)設(shè)數(shù)列{bn}滿(mǎn)足b1=,bn+1=b+bn,,若(2)中的Sm滿(mǎn)足對(duì)不小于2的任意正整數(shù)m,Sm<Tn恒成立,試求正整數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=()x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com