設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有xf′(x)-f(x)<0恒成立,則不等式x2f(x)>0的解集是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)單調(diào)性的性質(zhì)
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)條件構(gòu)造函數(shù)g(x)=
f(x)
x
,利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,判斷函數(shù)g(x)的單調(diào)性,然后根據(jù)函數(shù)f(x)的奇偶性判斷函數(shù)f(x)的取值情況,即可求得不等式的解集.
解答: 解:構(gòu)造函數(shù)g(x)=
f(x)
x
,g′(x)=
xf′(x)-f(x)
x2

因?yàn)楫?dāng)x>0時(shí),有xf′(x)-f(x)<0恒成立,即g′(x)=
xf′(x)-f(x)
x2
<0恒成立,
所以在(0,+∞)內(nèi)g(x)單調(diào)遞減.
因?yàn)閒(2)=0,所以f(x)在(0,2)內(nèi)恒有f(x)>0;在(2,+∞)內(nèi)恒有f(x)<0.
又因?yàn)閒(x)是定義在R上的奇函數(shù),
所以在(-∞,-2)內(nèi)恒有f(x)>0;在(-2,0)內(nèi)恒有f(x)<0.
又不等式x2f(x)>0的解集等價(jià)為不等式f(x)>0的解集.
所以不等式的解集為(-∞,-2)∪(0,2).
故答案為:(-∞,-2)∪(0,2).
點(diǎn)評(píng):本題主要考查函數(shù)求導(dǎo)法則及函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系,同時(shí)考查了奇偶函數(shù)的圖象特征.構(gòu)造函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=kx3+3(k-1)x2-k2+1在區(qū)間(0,4)上是減函數(shù),則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方形ABCD的邊長(zhǎng)是a,依次連接正方形ABCD各邊中點(diǎn)得到一個(gè)新的正方形,再依次連接新正方形各邊中點(diǎn)又得到一個(gè)新的正方形,依次得到一系列的正方形,如右圖所示.現(xiàn)有一只小蟲從A點(diǎn)出發(fā),沿正方形的邊逆時(shí)針?lè)较蚺佬,每遇到新正方形的頂點(diǎn)時(shí),沿這個(gè)正方形的邊逆時(shí)針?lè)较蚺佬,如此下去,爬行?0條線段.則這10條線段的長(zhǎng)度的平方和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=
9
x
在點(diǎn)M(3,3)處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高二(6)班4位同學(xué)從周一到周五值日,其中甲同學(xué)值日兩天,其余人各值日一天.若要求甲值日的兩天不能相連,且乙同學(xué)不值周五,則不同的值日種數(shù)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給n個(gè)自上而下相連的正方形著黑色或白色.當(dāng)n≤4時(shí),在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示:由此推斷,當(dāng)n=8時(shí),黑色正方形互不相鄰的著色方案共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是空間中兩條不同的直線,α,β,γ是空間中三個(gè)不同的平面,則下列命題正確的序號(hào)是
 

①若m∥n,m⊥β,則n⊥β;   
②若m∥n,m∥β,則n∥β;
③若m∥α,m∥β,則α∥β;    
④若α⊥γ,β⊥γ,則α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2lnx-x2.則函數(shù)f(x)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3x2+1,在x=1,△x=0.1時(shí),△y的值為( 。
A、0.63B、0.21
C、3.3D、0.3

查看答案和解析>>

同步練習(xí)冊(cè)答案