10.下列函數(shù)為奇函數(shù)的是( 。
A.y=$\sqrt{x}$B.y=ex-e-xC.y=x2D.y=2x-1

分析 根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.

解答 解:A.函數(shù)的定義域?yàn)閇0,+∞),定義域關(guān)于原點(diǎn)不對(duì)稱,故A為非奇非偶函數(shù);
B.f(-x)=e-x-ex=-(ex-e-x)=-f(x),則f(x)為奇函數(shù);
C.y=x2為偶函數(shù);
D.函數(shù)y=2x-1單調(diào)遞增,為非奇非偶函數(shù);
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若命題“?x∈[-1,+∞),x2-2ax+2≥a”是真命題,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-3]B.[1,+∞)C.[-3,1]D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.觀察以下等式:$1+2+3+…+n=\frac{n(n+1)}{2}$;$1×2+2×3+3×4+…+n×(n+1)=\frac{n×(n+1)×(n+2)}{3}$;            $1×2×3+2×3×4+3×4×5+…+n×(n+1)×(n+2)=\frac{n×(n+1)×(n+2)×(n+3)}{4}$猜想式子1×2×3×4+2×3×4×5+3×4×5×6+…+n×(n+1)×(n+2)(n+3)的和Sn,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知定義在R上的函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$,函數(shù)g(x)=$\frac{mx}{1+x}$的定義域?yàn)椋?1,+∞).
(1)若g(x)=$\frac{mx}{1+x}$在(-1,+∞)上遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(2)在(1)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(-1,1)上有且僅有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)若$tanα=\frac{1}{2}$,求sin2α+sinαcosα的值
(2)化簡(jiǎn)$\frac{1+sinx}{cosx}•\frac{sin2x}{{2{{cos}^2}(\frac{π}{4}-\frac{x}{2})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=-x2+ax-b.
(1)若a,b都是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),求方程f(x)=0有根的概率.
(2)若a,b都是從區(qū)間[0,4]任取的一個(gè)數(shù),求f(1)>0成立時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.點(diǎn)A(-2,0)到拋物線C:y2=8x的焦點(diǎn)F的距離|AF|等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知f(x)為R上的可導(dǎo)函數(shù),且?x∈R,均有f(x)>f′(x),則以下判斷正確的是( 。
A.f(2 013)>e2013f(0)B.f(2 013)<e2013f(0)
C.f(2 013)=e2013f(0)D.f(2 013)與e2013f(0)大小無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知命題p:滿足{a1,a2,…,an}⊆M?{a1,a2,…,an+m}的集合M有2m-1個(gè),命題q:等比數(shù)列{an}是遞增數(shù)列的充分不必要條件是其公比大于1,則下列命題是真命題的是(  )
A.(¬p)∧(¬q)B.p∧(¬q)C.p∧qD.(¬p)∨q

查看答案和解析>>

同步練習(xí)冊(cè)答案