20.有一個(gè)經(jīng)驗(yàn)級別達(dá)到25級的QQ好友,準(zhǔn)備將自己QQ農(nóng)場的15塊空地連在一起的5塊(如圖)種上種植級別分別為22級、23級、25級的櫻桃、荔枝和楊桃三種果樹種子,如果同一種果樹種子必須種在相鄰的地中,則不同的種法有36種.

分析 利用捆綁法結(jié)合排列求解即可.

解答 解:由題意可知22級、23級、25級的櫻桃、種的相鄰位置,
可得不同的種法有:${A}_{3}^{3}{A}_{3}^{3}$=36.種.
故答案為:36.

點(diǎn)評 本題考查排列組合的綜合應(yīng)用,注意捆綁法是解答相離問題的好方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知A={x|-1<x≤5},B={x|x2-x-m<0}.
(1)若m=2,求A∩(∁RB);
(2)若A∩B={x|-1<x<3},求m的值和A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a-1)x2+bx(a,b為常數(shù))在x=1和x=4處取得極值.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[-2,2]時(shí),都有2f(x)<-5x+c,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.集合A={x|-2≤x≤5}
(1)若集合B={2,4,6,8},求集合A∩B.
(2)若集合C={x|x2-4x+3>0},求集合A∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等比數(shù)列中S12=91,S4=7,則S8等于( 。
A.28B.32C.35D.28或-21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.用數(shù)學(xué)歸納法證明:1+2+22+…+2n-1=2n-1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.有下面四個(gè)命題:
①對于實(shí)數(shù)m和向量$\overrightarrow{a}$,$\overrightarrow$,恒有m($\overrightarrow{a}$-$\overrightarrow$)=m$\overrightarrow{a}$-m$\overrightarrow$;
②對于實(shí)數(shù)m,n和向量$\overrightarrow{a}$,恒有(m-n)$\overrightarrow{a}$=m$\overrightarrow{a}$-n$\overrightarrow{a}$;
③對于實(shí)數(shù)m和向量$\overrightarrow{a}$,$\overrightarrow$,若m$\overrightarrow{a}$=m$\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$;
④對于實(shí)數(shù)m,n和非零向量$\overrightarrow{a}$,若m$\overrightarrow{a}$=n$\overrightarrow{a}$,則m=n.
其中真命題有①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-1,g(x)=a|x-1|
(1)若關(guān)于x的方程|f(x)|=g(x)只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(2)設(shè)h(x)=|f(x)|+g(x)-a2,當(dāng)x∈[-2,2]時(shí),不等式h(x)≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)y=k(x+1)的圖象上存在點(diǎn)(x,y)滿足約束條件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,則函數(shù)y=k(x+1)的圖象與圓(x-4)2+(y-3)2=2有公共點(diǎn)的概率為$\frac{8\sqrt{3}}{23}$.

查看答案和解析>>

同步練習(xí)冊答案