【題目】某化工廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產(chǎn)1扯皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如表所示:
A | B | C | |
甲 | 4 | 8 | 3 |
乙 | 5 | 5 | 10 |
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車品乙種肥料,產(chǎn)生的利潤為3萬元、分別用x,y表示計劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問分別生產(chǎn)甲、乙兩種肥料,求出此最大利潤.
【答案】
(1)解:x,y滿足的條件關(guān)系式為: .
作出平面區(qū)域如圖所示:
(2)解:設(shè)利潤為z萬元,則z=2x+3y.
∴y=﹣ .
∴當直線y=﹣ 經(jīng)過點B時,截距 最大,即z最大.
解方程組 得B(20,24).
∴z的最大值為2×20+3×24=112.
答:當生產(chǎn)甲種肥料20噸,乙種肥料24噸時,利潤最大,最大利潤為112萬元
【解析】(1)根據(jù)原料的噸數(shù)列出不等式組,作出平面區(qū)域;(2)令利潤z=2x+3y,則y=﹣ ,結(jié)合可行域找出最優(yōu)解的位置,列方程組解出最優(yōu)解.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), , .
(1)設(shè)函數(shù),若在區(qū)間上單調(diào),求實數(shù)的取值范圍;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)擬建立一個藝術(shù)博物館,采取競標的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進入最后的招標.現(xiàn)從建筑設(shè)計院聘請專家設(shè)計了一個招標方案:兩家公司從個招標問題中隨機抽取個問題,已知這個招標問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.
(1)求甲、乙兩家公司共答對道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos2ωx﹣sin2ωx+2 cosωxsinωx,其中ω>0,若f(x)相鄰兩條對稱軸間的距離不小于
(1)求ω的取值范圍及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,a= ,b+c=3,當ω最大時,f(A)=1,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正四棱錐P﹣ABCD,B1為PB的中點,D1為PD的中點,則兩個棱錐A﹣B1CD1 , P﹣ABCD的體積之比是( )
A.1:4
B.3:8
C.1:2
D.2:3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市對貧困家庭自主創(chuàng)業(yè)給予小額貸款補貼,每戶貸款額為萬元,貸款期限有個月、個月、個月、個月、個月五種,這五種貸款期限政府分別需要補助元、元、元、元、元,從年享受此項政策的困難戶中抽取了戶進行了調(diào)查統(tǒng)計,選取貸款期限的頻數(shù)如下表:
貸款期限 | 個月 | 個月 | 個月 | 個月 | 個月 |
頻數(shù) |
以商標各種貸款期限的頻率作為年貧困家庭選擇各種貸款期限的概率.
(1)某小區(qū)年共有戶準備享受此項政策,計算其中恰有兩戶選擇貸款期限為個月的概率;
(2)設(shè)給享受此項政策的某困難戶補貼為元,寫出的分布列,若預(yù)計年全市有萬戶享受此項政策,估計年該市共要補貼多少萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,a2=2,且an+1=2an+3an﹣1(n≥2,n∈N+).
(1)設(shè)bn=an+1+an(n∈N+),求證{bn}是等比數(shù)列;
(2)(i)求數(shù)列{an}的通項公式;
(ii)求證:對于任意n∈N+都有 + +…+ + < 成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù), 是函數(shù)的兩個零點, 是函數(shù)的導函數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)無零點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com