【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若函數(shù), 是函數(shù)的兩個(gè)零點(diǎn), 是函數(shù)的導(dǎo)函數(shù),證明: .

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)是否變號(hào)進(jìn)行討論,當(dāng)時(shí), , 遞增,當(dāng)時(shí),導(dǎo)函數(shù)有一零點(diǎn),導(dǎo)函數(shù)先正后負(fù),故得增區(qū)間為,減區(qū)間為;(2)利用分析法先等價(jià)轉(zhuǎn)化所證不等式:要證明,只需證明 即證明,即證明,再令,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定其最值: 上遞增,所以,即可證得結(jié)論.

試題解析:(1) 的定義域?yàn)?/span>,

當(dāng)時(shí), , 遞增

當(dāng)時(shí),

遞增; 遞減

綜上:∴當(dāng)時(shí), 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

當(dāng)時(shí), 的單調(diào)增區(qū)間為

(2)由是函數(shù)的兩個(gè)零點(diǎn)有

,相減得

又∵

所以要證明,只需證明

即證明,即證明

,則

上遞減, ,∴上遞增,

所以成立,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,甲船在A處,乙船在A處的南偏東45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,應(yīng)沿什么方向,用多少h能盡快追上乙船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料,生產(chǎn)1扯皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如表所示:

A

B

C

4

8

3

5

5

10

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車品乙種肥料,產(chǎn)生的利潤為3萬元、分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問分別生產(chǎn)甲、乙兩種肥料,求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若函數(shù) 是函數(shù)的兩個(gè)零點(diǎn), 是函數(shù)的導(dǎo)函數(shù),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)已知雙曲線的焦點(diǎn)為,過的直線與曲線相交于兩點(diǎn).

(1)若直線的傾斜角為,且,求;

(2)若,橢圓上兩個(gè)點(diǎn)滿足: 三點(diǎn)共線且,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,ACBCCC1ACBC, 點(diǎn)DAB的中點(diǎn).

Ⅰ)求證:CD⊥平面A1ABB1;

Ⅱ)求證:AC1∥平面CDB1

Ⅲ)線段AB上是否存在點(diǎn)M,使得A1M⊥平面CDB1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,已知AB=9,BC=6, =2
(1)若四邊形ABCD是矩形,求 的值;
(2)若四邊形ABCD是平行四邊形,且 =6,求 夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率為,點(diǎn)坐標(biāo)原點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓的左焦點(diǎn)任作一條不垂直于坐標(biāo)軸的直線,交橢圓兩點(diǎn),記弦的中點(diǎn)為,過的垂線交直線于點(diǎn),證明:點(diǎn)在一條定直線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案