分析 (1)取PD的中點(diǎn)E,連結(jié)AE、EN,證明四邊形AMNE是平行四邊形,可得MN∥AE,利用線面平行的判定,即可得出結(jié)論.
(2)由線面垂直得PA⊥CD,由矩形性質(zhì)得AD⊥CD,由此能證明CD⊥MN.
(3)連接AC,PA⊥矩形ABCD所在的平面,所以∠PCA為PC與平面ABCD所成角.
解答 (1)證明:取PD 的中點(diǎn)E,連接AE、EN,
則有EN=$\frac{1}{2}CD$=$\frac{1}{2}AB$=AM,EN∥CD∥AB∥AM,
故AMNE 是平行四邊形,
∴MN∥AE,
∵AE?平面PAD,MN?平面PAD,
∴MN∥平面PAD.
(2)證明:∵PA⊥平面ABCD,
∴PA⊥AB,又AD⊥AB,
∴AB⊥平面PAD,
∴AB⊥AE,即AB⊥MN,
又CD∥AB,
∴MN⊥CD.
(3)解:連接AC,PA⊥矩形ABCD所在的平面,
所以∠PCA為PC與平面ABCD所成角,
AB=2a,BC=a,∴AC=$\sqrt{5}$a,PA=a,
∴tan∠PCA=$\frac{PA}{AC}$=$\frac{\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查線面平行的證明,考查線線垂直的證明,考查線面角,熟練掌握空間直線與平面平行及垂直的判定和性質(zhì)是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com