13.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過(guò)點(diǎn)$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)是否存在直線l:y=kx+m(k>0)與E相交于P,Q兩點(diǎn),且滿足①OP與OQ(O為坐標(biāo)原點(diǎn))的斜率之和為2;②直線l與圓x2+y2=1相切.若存在,求出l的方程;若不存在,說(shuō)明理由.

分析 (1)利用已知條件推出a,b的方程,求解可得橢圓方程.
(2)把y=kx+m代入E的方程得(1+4k2)x2+8kmx+4(m2-1)=0,設(shè)P(x1,y1),Q(x2,y2),利用韋達(dá)定理,通過(guò)kOP+kOQ=2,推出m2+k=1.△=16(4k2+k ).以及直線與圓相切,求解k即可.

解答 解:(1)由已知得$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,$\frac{1}{{a}^{2}}+\frac{3}{4^{2}}=1$,
解得 a2=4,b2=1,∴橢圓E的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$…(4分)
(2)把y=kx+m代入E的方程$\frac{{x}^{2}}{4}+{y}^{2}=1$,得(1+4k2)x2+8kmx+4(m2-1)=0,
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=$\frac{-8km}{1+4{k}^{2}}$,x1x2=$\frac{4({m}^{2}-1)}{1+4{k}^{2}}$ ①
由已知得kOP+kOQ=$\frac{{y}_{1}}{{x}_{1}}+\frac{{y}_{2}}{{x}_{2}}$=$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}}{{x}_{1}{x}_{2}}$=$\frac{(k{x}_{1}+m){x}_{2}+(k{x}_{2}+m){x}_{1}}{{x}_{1}{x}_{2}}$=2,
∴2(k-1)x1x2+m(x1+x2)=0.②…(6分)
把①代入②得$\frac{8(k-1)({m}^{2}-1)}{1+4{k}^{2}}-\frac{8k{m}^{2}}{1+4{k}^{2}}$=0,即m2+k=1.③又△=16(4k2-m2+1)=16(4k2+k ).
由$\left\{{\begin{array}{l}{4{k^2}+k>0}\\{{m^2}=1-k≥0}\end{array}}\right.$得k<-$\frac{1}{4}$或0<k≤1.…(8分)
由直線l與圓x2+y2=1相切,則$\frac{|m|}{\sqrt{{k}^{2}+1}}$=1,④…(10分)
③④聯(lián)立得k=0(舍去)或k=-1.∴m2=2.
∴直線l的方程為y=-x±$\sqrt{2}$.…(12分)

點(diǎn)評(píng) 本題考查橢圓的求法,直線與橢圓的位置關(guān)系的應(yīng)用,存在性問(wèn)題的解決方法,考查設(shè)而不求,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知F1(-1,0),F(xiàn)2(1,0),曲線C1上任意一點(diǎn)M滿足$|{M{F_2}}|-|{M{F_1}}|=\sqrt{2}$;曲線C2上的點(diǎn)N在y軸的右邊且N到F2的距離與它到y(tǒng)軸的距離的差為1.
(1)求C1,C2的方程;
(2)過(guò)F1的直線l與C1相交于點(diǎn)A,B,直線AF2,BF2分別與C2相交于點(diǎn)C,D和E,F(xiàn).求$\sqrt{|{CD}|•|{EF}|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知球內(nèi)接正四棱錐P-ABCD的高為3,AC,BC相交于O,球的表面積為$\frac{169π}{9}$,若E為PC中點(diǎn).
(1)求異面直線BP和AD所成角的余弦值;
(2)求點(diǎn)E到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],則f(x)的最小值為-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖多面體ABCD中,面ABCD為正方形,棱長(zhǎng)AB=2,AE=3,DE=$\sqrt{5}$,二面角E-AD-C的余弦值為$\frac{{\sqrt{5}}}{5}$,且EF∥BD.
(1)證明:面ABCD⊥面EDC;
(2)若直線AF與平面ABCD所成角的正弦值為$\frac{2}{3}$,求二面角AF-E-DC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx.
(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求正實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值.
(3)求證:對(duì)于大于1的正整數(shù)n,ln$\frac{n}{n-1}$>$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S6=$\frac{21}{2}$,公比q=-$\frac{1}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求和:a12+a22+a32+…+an2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若全集U、集合A、集合B及其關(guān)系用韋恩圖表示如圖所示,則圖中陰影表示的集合為( 。
A.U(A∩B)B.U(A∪B)C.(A∪B)∩(∁U(A∩B))D.((∁UA)∩B)∩(∁UB)∩A)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知A(-1,0)、B(1,0),以AB為一腰作使∠DAB=90°直角梯形ABCD,且|AD|=3|BC|,CD中點(diǎn)的縱坐標(biāo)為1.若橢圓以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D,則此橢圓的方程為(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案