19.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實數(shù)m滿足f(log3m)+$f({log_{\frac{1}{3}}}m)$≤2f(1),則m的取值范圍是( 。
A.(0,3]B.[$\frac{1}{3}$,3]C.[$\frac{1}{3}$,3)D.[$\frac{1}{3}$,+∞)

分析 根據(jù)對數(shù)的運算性質(zhì)結(jié)合函數(shù)奇偶性和單調(diào)性的關(guān)系進行轉(zhuǎn)化即可得到結(jié)論.

解答 解:∵f(x)是定義在R上的偶函數(shù),
∴f(log3m)+$f({log_{\frac{1}{3}}}m)$≤2f(1),等價為f(log3m)+f(-log3m)+≤2f(1),
即2f(log3m)≤2f(1),則f(|log3m|)≤f(1),
∵在[0,+∞)上單調(diào)遞增,
∴|log3m|≤1,
即-1≤log3m≤1,
$\frac{1}{3}$≤m≤3.
故選:B

點評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,且經(jīng)過點$P(1,\frac{3}{2})$,兩個焦點分別為F1,F(xiàn)2
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A,B兩點,若△AF2B的內(nèi)切圓半徑為$\frac{{3\sqrt{2}}}{7}$,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點為A,上頂點為B,直線AB的斜率為$\frac{\sqrt{6}}{6}$,坐標原點O到直線AB的距離為$\frac{\sqrt{42}}{7}$.
(I)求橢圓C的標準方程;
(Ⅱ)是否在圓O:x2+y2=b2上存在點D,使得圓O過點D的切線與橢圓C交于點P,Q,線段PQ的中點為M,直線PQ與OM的夾角為45°?若存在,求點D的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在平面直角坐標系中,已知三個點列{An}、{Bn}、{Cn},其中An(n,an)、Bn(n,bn)、Cn(n-1,0),滿足向量$\overrightarrow{{A}_{n}{A}_{n+1}}$與向量$\overrightarrow{{B}_{n}{C}_{n}}$共線,且bn+1-bn=6,a1=b1=0,則an=3n2-9n+6(n∈N*).(用n表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,過焦點且垂直于x軸的直線被橢圓E截得的線段長為2.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線y=kx+1與橢圓E交于A,B兩點,以AB為直徑的圓與y軸正半軸交于點C.是否存在實數(shù)k,使得△ABC的內(nèi)切圓的圓心在y軸上?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某美食雜志社準備舉辦一次南北大菜的研討會,共邀請60名一線廚師或美食專家參加,不同菜系的廚師或美食專家人數(shù)如下表所示:
菜系粵菜川菜魯菜東北菜
人數(shù)20151510
(1)從這60名廚師或美食專家中隨機選出2名,求2人屬于同一菜系的概率;
(2)由于粵菜與川菜是兩大著名菜系,現(xiàn)隨機從粵菜與川菜的廚師或美食專家中選出2名發(fā)言,設(shè)粵菜專家發(fā)言人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知全集U={1,2,3,4,5},集合A={1,2,3},B={3,4,5},則A∩∁UB=(  )
A.{3}B.{1,2,4,5}C.{1,2}D.{1,3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在一寶寶“抓周”的儀式上,在寶寶面前擺著4件學習用品,3件生活用品,4件娛樂用品,若他只抓其中的一件物品,則他抓的結(jié)果有10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求適合下列條件的雙曲線的標準方程:
(1)半實軸長為4,半虛軸長為3;
(2)實軸長為12,焦距為14,焦點在y軸上;
(3)漸近線方程為y=±$\frac{3}{5}$x,焦點坐標為(±$\sqrt{2}$,0).

查看答案和解析>>

同步練習冊答案