分析 (Ⅰ)根據(jù)橢圓的離心率,以及橢圓過點(diǎn)($\frac{1}{2},-\frac{\sqrt{14}}{4}$),
列方程組求出a2、b2,寫出橢圓方程;
(Ⅱ)由橢圓C的方程和圓A的方程,求出y0、x0的關(guān)系以及x0的取值范圍,
代入并計(jì)算|FM|•|FN|的取值范圍,根據(jù)|FM|•|FN|>p恒成立求出實(shí)數(shù)p的最大值.
解答 解:(Ⅰ)橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$①,
且橢圓過點(diǎn)($\frac{1}{2},-\frac{\sqrt{14}}{4}$),
∴$\frac{1}{{4a}^{2}}$+$\frac{7}{{8b}^{2}}$=1②;
又a2=b2+c2③,
由①②③組成方程組,解得a2=2,b2=1;
∴橢圓C的方程為$\frac{{x}^{2}}{2}$+y2=1;
(Ⅱ)由橢圓的方程知,焦點(diǎn)F(1,0),
又圓A的方程為${(x{-x}_{0})}^{2}$+${(y{-y}_{0})}^{2}$=${{(x}_{0}-1)}^{2}$+${{y}_{0}}^{2}$;
令x=0,得y2-2y0y+2x0-1=0,
∴y1+y2=2y0,y1•y2=2x0-1,
且△=4${{y}_{0}}^{2}$-4(2x0-1)>0,
${{y}_{0}}^{2}$=1-$\frac{1}{2}$${{x}_{0}}^{2}$,
解得-2-2$\sqrt{2}$<x0<-2+2$\sqrt{2}$;
又點(diǎn)A在橢圓C上,∴-$\sqrt{2}$≤x0≤$\sqrt{2}$,
綜上,-$\sqrt{2}$≤x0<-2+2$\sqrt{2}$;
∴|FM|•|FN|=$\sqrt{{{y}_{1}}^{2}+1}$•$\sqrt{{{y}_{2}}^{2}+1}$
=$\sqrt{{{{(y}_{1}y}_{2})}^{2}+{{(y}_{1}}^{2}{{+y}_{2}}^{2})+1}$
=$\sqrt{{({2x}_{0}-1)}^{2}+{{4y}_{0}}^{2}-2({2x}_{0}-1)+1}$
=$\sqrt{{{2x}_{0}}^{2}-{8x}_{0}+8}$
=$\sqrt{2}$(2-x0),
∴|FM|•|FN|∈(4$\sqrt{2}$-4,2+2$\sqrt{2}$];
由|FM|•|FN|>p恒成立,
∴實(shí)數(shù)p的最大值為4$\sqrt{2}$-4.
點(diǎn)評(píng) 本題考查了圓錐曲線方程的應(yīng)用問題,也考查了方程與不等式的應(yīng)用問題,是綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1,2,3,4,5 | B. | 2,4,6,8,10 | C. | 4,14,24,34,44 | D. | 5,16,27,38,49 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0.8 | C. | 0.6 | D. | 0.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 412 | B. | 554 | C. | 598 | D. | 573 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | $\sqrt{7}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com